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Supplementary Note 
 
Psychiatric Phenotypes. We curated the largest and most recent GWAS summary data from 
individuals of European ancestry for eleven major psychiatric disorders (Supplementary Table 1). 
We refer the reader to the original articles for the corresponding univariate GWAS for details about 
sample ascertainment, quality control, and related procedures. For PTSD, MDD, ADHD, ANX, 
and ALCH, phenotype-specific meta-analyses of GWAS summary data derived from two different 
contributing sources per disorder were conducted in Genomic SEM so as to account for potentially 
unknown degrees of participant overlap across contributing samples. Models were specified to be 
equivalent to a fixed-effects meta-analysis, with both variables loading on the latent variable with 
an unstandardized loading fixed to 1.0, and both residual variances fixed to 0. LDSC-estimated 
genetic correlations within-phenotype-across-data-source were all ³ .6 (Supplementary Table 45). 
These GWAS meta-analyses in Genomic SEM were highly genetically correlated (³ .94 as 
estimated with LDSC) with those estimated in METAL,1 which does not take sample overlap into 
account. Consistent with the differences in whether sample overlap is considered, Genomic SEM 
and METAL yielded univariate LDSC intercepts slightly below and slight above 1, respectively.  
 
For the five meta-analyzed traits we provide Manhattan plots, tables of independent loci, and tables 
of hits that are in LD with hits previously identified in the GWAS catalogue (Supplementary Figure 
42; Supplementary Tables 46-53). We find that many of the identified loci have been previously 
reported for the same or overlapping traits. As expected, the results for MDD and ADHD also 
overlap strongly with findings from the most recent MDD2 and ADHD3 papers that use highly 
similar samples to those that contributed summary data analyzed here. The observed differences 
are attributable to different analytic pipelines and partially non-overlapping contributing cohorts; 
for example, results reported from the published GWAS of ADHD3 include non-European 
samples, and hold some cohorts out for independent follow-up analyses.  
 
The current analyses included GWAS summary statistics produced using self-report items not 
directly assessed by a clinician for MDD, ANX, ALCH, and ADHD. The inclusion of these cohorts 
was based on the large genetic correlations between the clinically diagnosed and self-report 
GWAS, the increased mean chi-square when meta-analyzing self-report and clinical diagnosis 
GWAS (Supplementary Table 45), and a general trend in psychiatric genomics to include self-
report cohorts in the primary GWAS studies being published. In some cases, multiple self-report 
options were available, in which case phenotypes were chosen based on the field standard and 
prior findings. For example, the choice to use the broad depression phenotype from UK Biobank 
and self-report 23andMe MDD phenotype was based on the inclusion of both phenotypes in the 
most recent GWAS of MDD4 and of the latter phenotype in the prior PGC GWAS of MDD.5 In 
addition, Wray et al.5 find that polygenic scores constructed from MDD 23andMe summary 
statistics predict equal, or greater, amounts of out-of-sample variance in MDD phenotypes than 
PGS constructed from PGC case/control summary statistics. Moreover, they find that the meta-
analyzed summary statistics across both 23andMe and PGC cohorts predicted the greatest amount 
of variance. We note also that the meta-analysis between PGC Alcohol Use Disorder and UKB 
self-reported alcohol use is limited to self-reported problematic alcohol use (as assessed by the 
AUDIT-P) and not alcohol consumption (as assessed by the AUDIT-C). This is based on prior 
work indicating stronger genetic correlations between self-reported problematic alcohol use and 
alcohol dependence relative to self-reported alcohol consumption.6   
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While conducting this project the more recent PGC Freeze 2 release of PTSD became available.7 
However, the GWAS z statistics and heritability estimates for PTSD Freeze 2 were lower than 
were observed for PTSD Freeze 1. As a result, our attempts to incorporate the PTSD Freeze 2 
summary data produced a variety of technical problems (e.g. out of bounds genetic correlations 
and small heritability estimates). We therefore report results based on PTSD Freeze 1 summary 
data.  
 
Investigation of Genome-Wide Factor Structure. In order to explore the full-scope of factors 
solutions, EFAs were conducted using the factanal R package for two to five factor solutions using 
both oblique rotations, which allow for correlations among the latent factors, and orthogonal 
rotations, which assumes factors are independent (i.e., uncorrelated). Orthogonal rotations were 
examined as we, in part, sought to identify maximally separable dimensions with distinct sets of 
psychiatric indicators. EFAs were conducted for the genetic correlation structure derived from odd 
autosomes only. Confirmatory factor analyses (CFAs) specified on the basis of these EFAs were 
subsequently fit to a genetic correlation matrix estimated using only even autosomes. Using odd 
and even autosome covariance matrices for the exploratory and confirmatory models, respectively, 
provided a form of cross-validation to guard against model overfitting. For comparative purposes, 
we also consider model fit and final factor solutions for CFAs fit to the S-LDSC matrix 
(Supplementary Figure 42). 
 
For the CFAs, factors were assigned to traits when their standardized loading exceeded .35 in the 
corresponding EFAs, with two exceptions. First, for all EFAs with > 3 factors, a factor was 
identified with TS as its only indicator with standardized loading >.35. In the context of the CFAs, 
assigning TS to all factors at once, or to one factor at a time, resulted in issues with model 
convergence. Consequently, this final factor was removed in the CFA and TS was specified to 
always load on the factor with the largest EFA loading (excluding the factor defined only by TS) 
and models were compared where TS loaded onto one of the remaining factors. Among these 
combinations of TS models, a final model was selected using model fit indices (i.e., AIC, SRMR, 
and CFI). Second, for certain EFA solutions, there were traits that did not meet the standardized 
loading criteria of .35 for any factor. For these traits, we assigned factors to them in the CFA when 
their standardized loading exceeded a more lenient threshold of 0.2. We then inspected model fit 
indices for the follow-up CFA model to confirm that including those factor loadings provided 
better fit to the data.  
 
All CFAs were fit using the Weighted Least Squares (WLS) estimator in the GenomicSEM R 
package described above, which uses the inverse of the diagonal of the sampling covariance (V) 
matrix to weight the discrepancy function. This works to prioritize reducing model misfit for those 
cells in the genetic covariance matrix that are estimated with greater precision, with the desirable 
result of generally decreasing the sampling variance of parameter estimates in Genomic SEM. It 
should be noted that WLS estimation does not necessarily produce a solution whereby the better 
powered GWAS have larger factor loadings. In instances where traits with better-powered GWAS 
estimates evince lower genetic correlations with other included traits, WLS estimation will 
produce a solution that prioritizes lower factor loadings for these traits and consequently minimize 
their downstream influence on multivariate GWAS estimates.   
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CFAs based on orthogonal EFA results allowed for freely correlated factors, as pruning factor 
loadings has the potential to reintroduce factor correlations. In the context of the CFAs, we also 
considered a common factor model in which all 11 traits loaded onto a single factor. CFAs with 4 
correlated factors were similar in both factor structure and fit to the data (Supplementary Table 
53). In addition, the CFAs with 4 correlated factors provided far superior fit to the data 
(Supplementary Figures 42-43), relative to the other models, with a number of the other CFAs 
failing to converge. Moreover, as indicated by model fit statistics, and observed directly in genetic 
correlation heatmaps, the correlation structure implied by the model estimates was much closer to 
the observed genetic correlations for these CFA solutions (Supplementary Figure 44). The final 
model was chosen as a four correlated factor CFA (Supplementary Table 55) as this ultimately 
provided the best fit to the data (c2[33] = 126.85, AIC = 192.85, CFI = .955, SRMR = .078; 
Supplementary Table 48 for fit statistics of all models). Importantly, the model identified using a 
split of even and odd autosomes also fit the data well when applied to the genome-wide matrix 
estimated using autosomes 1-22 for LDSC (Figure 1b; c2[33] = 161.66, AIC = 227.66, CFI = .975, 
SRMR = .072) and S-LDSC (Supplementary Figure 42; c2[33] = 89.63, AIC = 155.63, CFI = .976, 
SRMR = .086).  
 
The moderate factor correlations in this final model were also suggestive of a hierarchical structure 
(Supplementary Figure 43). This provided relatively comparable fit to the data for the LDSC 
genome-wide matrix (Figure 1c; c2[35] = 171.37, AIC = 233.37, CFI = .974, SRMR = .079) and 
S-LDSC genome-wide matrix (Supplementary Figure 42; c2[35] = 91.83, AIC = 153.83, CFI = 
.976, SRMR = .087). The absence of improved fit for the hierarchical model may reflect the fact 
that there was observable bias when comparing the factor correlations from the non-hierarchical 
model against the model implied correlations within the hierarchical model (Supplementary Figure 
44). In this model, the p-factor explained the greatest proportion of variance in the Internalizing 
disorders factor (55%) and relatively similar proportions of variance in the remaining three factors 
(30%-34%). 
 
As the hierarchical model reflects a constrained version of the bifactor model, the bifactor model 
is always able to approximate the empirical genetic covariance as well as, or better than, the 
hierarchical model.8 Indeed, the bifactor model fit the data very well (c2[28] = 120.35, AIC = 
196.35, CFI = .982, SRMR = .062). 

 
Genomic SEM Estimates Excluding Self-Report GWAS. In a sensitivity analysis, we re-
examined the Genomic SEM factor solutions when excluding GWAS summary statistics that 
included cohorts for which the psychiatric phenotypes were based primarily on self-report items 
not directly assessed by a clinician. This involved excluding the UK Biobank samples from MDD, 
ANX, and ALCH, and the 23andMe cohorts from MDD and ADHD. This reflected an 81% 
reduction in effective sample size for MDD, an 82% reduction for ANX, a 24% reduction for 
ADHD, and an 84% reduction for ALCH. To begin, we examined the heatmap of genetic 
correlations among the 11 traits, along with the difference in genetic correlations relative to genetic 
correlations estimated using all cohorts. We observe similar patterns of clustering among the traits 
(Supplementary Figure 1). Relative to using all cohorts, these analyses produced slightly larger 
genetic correlations for MDD and slightly smaller correlations for ANX.  
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We conducted a new EFA excluding the self-report cohorts using the same procedure of fitting the 
EFA in odd chromosomes and the CFA in even chromosomes. These analyses revealed a 
correlated factors model with four factors to be the best fitting model, with this model fitting the 
data well in both even chromosomes, c2[35] = 135.70, AIC = 197.70, CFI = .907, SRMR = .104; 
and all chromosomes, c2[35] = 209.54, AIC = 271.54, CFI = .936, SRMR = .078 (Supplementary 
Figure 1c; Supplementary Table 51). This factor structure was highly similar to that identified 
using all cohorts, with the factors again best characterized as reflecting compulsive, psychotic, 
neurodevelopmental and internalizing disorders. The one notable exception was cross-loadings of 
both MDD and ANX on the Compulsive disorders factor. A hierarchical model fit overtop this 
factor structure fit the data relatively worse in both even chromosomes, c2[37] = 170.30, AIC = 
228.30, CFI = .878, SRMR = .147; and all chromosomes, c2[37] = 231.59, AIC = 289.59, CFI = 
.929, SRMR = .103.  
 
We went on to estimate the parameters from the final confirmatory correlated factor model 
represented in Figure 1 using this more restricted dataset. Overall, both factor loadings and factor 
correlations from this restricted dataset were highly similar to those for the full dataset, and fit the 
data well, c2[33] = 189.48, AIC = 255.48, CFI = .942, SRMR = .098; albeit with a lower loading 
of ANX on the Internalizing disorders factor (Supplementary Figure 1). We additionally used the 
restricted dataset to estimate a five-factor orthogonal EFA model, which was the model that served 
as the basis for the final confirmatory factor model in the main set of analyses. To quantify the 
similarity of EFA solutions across the full and restricted datasets, we computed factor congruence 
coefficients using the R psych package. Congruence coefficients index the similarity between 
factor solutions, with possible values ranging between -1.0 and +1.0. A congruence coefficient 
greater than .90 indicates an extremely high level of similarity of the factors, and values above .84 
are considered reasonably similar. The congruence coefficients were .92 for the Compulsive 
disorders factor, 1.0 for the Psychotic disorders factor, .93 for the Neurodevelopmental disorders 
factor, and .85 for the Internalizing disorders factor. Of note, the factor solution identified using 
all cohorts provided better fit to the data excluding self-report cohorts than the factor solution 
identified using an EFA in self-report cohorts only reported above. In order to provide a more 
direct comparison to results using the full dataset, and owing to the better model fit, the correlated 
factor model identified using the full dataset was carried forward to examine GWAS hits in the 
restricted dataset.  
 
As a final set of sensitivity analyses, we reexamined the SNP effects for the 154 hits identified 
from the correlated factors model estimated in the restricted dataset. All hits for the Compulsive 
and Psychotic disorders factor were also identified as hits using the restricted dataset, 8 out of 9 
hits were genome-wide significant for the Neurodevelopmental disorders factor, and none of the 
44 hits were estimated as genome-wide significant for the Internalizing disorders factor 
(Supplementary Table 3). However, plotting the distribution of effects indicate clear signal for 
these 44 loci in the restricted dataset relative to the estimated SNP effects for a random subset of 
500 SNPs. Moreover, there was extremely high concordance for this subset of SNPs for the 
estimated factor betas across the full and restricted datasets (r ≥	 .94 Supplementary Figure 2). In 
addition, the hits identified in the full dataset were neither QSNP hits nor characterized by robust 
QSNP signal in the restricted dataset (Supplementary Table 3). Finally, we note that there were only 
2 independent loci for MDD and 1 independent locus for ANX in the restricted sample for the 
listwise deleted set of SNPs present across the 11 psychiatric disorders. The absence of 
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Internalizing factor hits in the restricted dataset, therefore, appears to largely reflect an attenuated 
signal as a result of a substantial reduction in sample size.  
 
Genetic Correlations with External Traits. For biobehavioral traits, summary statistics for 49 
phenotypes broadly related to various domains of human health and well-being were downloaded 
from various online sources, primarily sourced from GWAS Atlas.21 For brain morphology, 101 
summary statistics were downloaded from the GitHub page that corresponds to the summary data 
produced by Zhao et al. (2019).22 For accelerometer data, 24 summary statistics for each hour of 
movement across the day in UK Biobank were downloaded from the GCTA website.23 All 
summary statistics were cleaned and processed using the munge function of Genomic SEM, 
retaining all HapMap3 SNPs outside of the major histocompatibility complex (MHC) regions with 
minor allele frequencies (MAFs) ≥ .01. To evaluate potential associations between the psychiatric 
genetic factors and external traits, we used Genomic SEM to estimate genetic correlations between 
each of the four psychiatric factors, the hierarchical p-factor, and all of the relevant traits.  
 
Brain Morphology. Genetic correlations were examined between both the four correlated factors 
and the hierarchical factor with 101 metrics of brain morphology. We also used model c2 difference 
tests to determine whether the genetic correlations were likely to operate through the psychiatric 
factor, or were heterogenous across the factor indicators. For the second-order factor from the 
hierarchical structure, these model comparisons indexed heterogeneity at the level of the 
psychiatric factors. These results should be treated as preliminary as no correlations survived 
Bonferroni correction for 101 tests (p < 4.95e-4). However, it is of note that the rank ordering of 
genetic correlations with brain regions was largely specific to the four psychiatric factors 
(Supplementary Table 4). With respect to overlap across factors, there was an association between 
the Psychotic, Neurodevelopmental and p-factor and the right caudal middle frontal region, an area 
within the dorsolateral prefrontal cortex (dlPFC). This is consistent with previous findings that 
have identified dlPFC alterations for schizophrenia,9 bipolar disorder,10 and ADHD.11 Unique to 
the Psychotic disorders factor was an association with another dlPFC region, the left rostral middle 
frontal gyrus, which has previously been associated with schizophrenia.12 However, this was 
significantly heterogeneous and showed a unique association with BIP in our dataset 
(Supplementary Figure 4). In addition, the Psychotic disorders factor was genetically correlated 
with the pars opercularis, a central region of Broca’s area that has been associated with both bipolar 
disorder and schizophrenia.13  
 
The Compulsive disorders factor was most significantly correlated with the left and right caudate 
and putamen, regions that have been implicated for both OCD and TS.14-16 Notably, the left and 
right putamen were also strongly associated with the hierarchical p-factor. The 
Neurodevelopmental disorders factor was correlated with the right putamen and the left and right 
pericalcarine region, both of which have been associated with autism.17,18 Both the left and right 
pericalcarine were also significantly heterogenous, evincing a more robust association with PTSD 
and AUT relative to ADHD and MDD. The Internalizing disorders factor was particularly 
genetically correlated with the left medial orbitofrontal region, which has been associated with 
both trait anxiety19 and the comorbid presentation of MDD and GAD relative to controls or MDD 
alone.20  
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Genetic Correlations with Biobehavioral Traits. As expected, all factors were positively, 
genetically associated with psychiatric phenotypes from outside studies, including the cross-
disorder iPSYCH results, and negatively genetically correlated with indices of positive mental 
health (e.g., subjective well-being, family relationship satisfaction; Supplementary Figure 6). In 
the remainder of this section, we generally describe patterns of genetic correlations with external 
biobehavioral traits outside of the psychiatric domain. 
 
The Compulsive disorders factor was negatively genetically correlated with anthropomorphic 
traits (BMI, waist-to-hip ratio) and risk-taking behaviors (e.g., automobile speeding, Figure 3). 
Educational attainment (EA) and childhood intelligence evinced particular patterns of genetic 
associations with the individual compulsive disorders that were inconsistent with their operation 
via the Compulsive disorders factor, where AN and OCD were positively associated and TS 
negatively associated (Supplementary Figure 7).  
 
The Psychotic disorders factor was negatively associated with BMI and positively associated with 
neuroticism. Phenotypes whose patterns of genetic associations with the individual disorders were 
inconsistent with their operation via the Psychotic disorders factor were largely cognitive, for 
which BIP was associated with more positive outcomes relative to SCZ.  
 
The Neurodevelopmental disorders factor was genetically associated with earlier age at 
menopause. All other external correlates outside of the psychiatric domain that survived 
Bonferroni-correction exhibited patterns of associations with the individual neurodevelopmental 
disorders that were inconsistent with their operation via the factor. Cognitive (e.g., educational 
attainment, intelligence) and economic outcomes (e.g., own housing outright) had the strongest 
disorder-specific associations, with positive associations observed for AUT, and negative 
associations for PTSD and ADHD. In a few instances, PTSD stood apart from the remaining 
indicators. This included a stronger, negative genetic correlation between PTSD and agreeableness 
and a stronger, positive genetic correlation with suicide attempts relative to AUT and ADHD.  
 
The Internalizing disorders factor exhibited negative genetic associations with age at menopause, 
EA, and positive associations with various adverse health outcomes (e.g., asthma, back pain, 
coronary artery disease). Phenotypes with disorder-specific associations included socioeconomic 
phenotypes (e.g., owning a house outright), which tended to exhibit slightly stronger negative 
genetic associations with MDD than with ANX. In addition, we observed a disorder-specific 
association with neuroticism, where ANX was estimated to have a stronger, positive genetic 
correlation relative to MDD.  
 
The p-factor exhibited a homogenous genetic correlation with automobile speeding propensity 
only. All other external non-psychiatric correlates that survived Bonferroni-correction exhibited 
patterns of associations with the first order psychiatric genetic factors that were inconsistent with 
their operation via the p-factor. The genetic associations with EA deviated most strongly from the 
hierarchical factor structure. These patterns of widespread heterogeneity in genetic correlations 
with external phenotypes undermine the utility of the p-factor. 
 
Consistent with phenotypic findings24 and conceptualizations25 that posit cognitive deficits as a 
central distinguishing factor across SCZ and BIP, we observe distinct genetic associations with 
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cognitive outcomes, with BIP associated with better outcomes relative to SCZ. Within the 
personality domain, neuroticism—a construct commonly observed to be both phenotypically26 and 
genetically27 associated across internalizing disorders—showed a stronger association with ANX 
over MDD. As many of these external traits and the disorders are multi-faceted in nature, it will 
be important for future work to obtain finer-grained phenotypes to better define the boundaries of 
these findings. Indeed, recent work using Genomic SEM found that ANX and MDD may share 
unique genetic associations with specific facets of neuroticism.28 
 
Estimation of Q Metrics. We compute heterogeneity statistics for both associations with external 
traits (QTrait) and individual SNPs (QSNP). These index violation of the null hypothesis that a given 
trait or SNP acts through a given factor. Put another way, it quantifies whether the external trait or 
SNP is more likely to operate through the common pathways of the psychiatric factors, or the 
independent pathways of individual disorders. These Q metrics thereby identify instances when 
associations with a trait or SNP do not plausibly operate on the individual phenotypes exclusively 
by way of associations with common factor(s), and may be highly specific to the individual 
disorder. Four separate, follow-up models were estimated in which the SNP or trait predicted three 
of the overarching factors and the indicators of the remaining fourth factor (see Supplementary 
Figure 5 for QTrait path diagrams; Supplementary Figure 45 for QSNP path diagrams). Computing 
the nested c2 difference test between the common pathways model, in which the SNP or trait 
predicted all four factors, to one of these four, follow-up, independent pathways models produces 
a factor-specific Q metric. We note that it has been previously demonstrated that common and 
independent pathways models are nested and, therefore, appropriate for comparison via the nested 
c2  difference tests29 used to compute Q metrics here.  
 
We calculate model c2  for both the common and independent pathways models using the two-step 
procedure described in Grotzinger et al. (2019).30 In Step 1 of this procedure a proposed model is 
estimated. In Step 2, the Step 1 estimates are fixed and the residual covariances and variance of 
the indicators are freely estimated. The estimates in Step 2 capture both the discrepancy between 
the model implied and observed covariance matrices, and the corresponding sampling covariance 
matrix (VR) of R. The VR matrix has the eigendecomposition:  

VR = (P1 P0) &	"	#	#	# ' (
)$	%	
)&	% * 

with P1 reflecting a matrix of principal components (eigenvectors) of VR, + a corresponding 
diagonal matrix consisting of non-zero eigenvalues, and P0 the null space of VR. Projecting Ri, the 
vector of residual covariances estimated in Step 2, onto P1 and adjusting for corresponding 
eigenvalues produces: 

,
'$
			()$	%-).(0, 2*) 

Therefore, 

-)′P1+
-1

P1′-) ∼ c2 (r) 
It has been previously confirmed via simulation that this equation produces a c2 distributed test 
statistic.30 This method of computing c2 difference tests across a common pathways model and an 
independent pathways model to arrive at a Q metric is mathematically equivalent to the procedure 
outlined for calculating QSNP in Grotzinger et al. (2019).30  
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We note a number of important points to keep in mind with respect to interpreting Q (see  de la 
Fuente et al. [2020]31 for additional explication). First, Q will be most significant for a factor when 
the vector of observed effects with an external trait or SNP is not proportional to the unstandardized 
loadings of the disorders on the factor. Consequently, Q is not necessarily significant when the 
vector of observed external SNP/trait effects is unequal across the disorders as, in many cases, the 
disorders will also have unequal unstandardized factor loadings. For example, in cases where a 
particular disorder has a low unstandardized loading relative to the other disorders, we would 
expect Q to be high for SNPs or external traits that show comparable associations across all 
disorders. As Q is calculated based on observed beta coefficients, and not z-statistics, this has the 
desirable property that Q will not increase simply due to differences in power across the univariate 
GWAS. As an interpretive caveat, we note also that Q will not be significant in instances when the 
effect of an external trait or SNP has similar, but mechanistically independent, effects on the 
disorders that define the factor. In this sense, Q is most appropriately viewed in the same light as 
many other statistical hypothesis tests: as a means of rejecting the null (i.e., that the trait or SNP 
acts solely via the factor) but not as a means of directly confirming the null. Indeed, patterns of 
external associations are generally not expected to conform exactly to the factor model, just as 
population effects are never expected to be exactly 0. However, by setting stringent significance 
thresholds we seek to identify via Q those SNPs and external traits that strongly deviate from the 
factor structure, thereby offering insight into underpinnings of genetic divergence across even 
highly correlated disorders.  
 
For the hierarchical factor structure, we computed the  c2 difference test for a model in which the 
SNP or trait predicted only the second-order p-factor, to the model c2 for a model in which the 
SNP or trait predicted only the four, first-order psychiatric factors. For the bifactor model, we 
compared a model in which the SNP predicted only the p-factor to a model in which the SNP 
predicted both the p-factor and the remaining four orthogonal factors. For both the hierarchical 
and bifactor model, Q indexes heterogeneity at the level of the psychiatric factors (i.e., deviation 
from the null that the SNP or trait operates through the p-factor). Therefore, a significant Q statistic 
for the hierarchical or bifactor model is likely to identify patterns of external associations that are 
specific to a subset of the psychiatric factor(s). This is distinct from the interpretation of Q in the 
context of the correlated factors model, as a significant hierarchical or bifactor Q may still conform 
to the local structure of one of the correlated factors.  
 

Identification of Top Hits (Clumping) and Overlapping Hits. Lead SNPs for meta-analyzed 
univariate indicators and the latent genetic factors were identified using the clumping and pruning 
algorithm in FUMA.33 Independent significant SNPs were defined as crossing the genome-wide 
significance threshold of p < 5e-8 that were independent from other SNPs at r2 < 0.1. We used pre-
calculated LD from European 1000 Genomes Phase 3 reference panel to identify independent 
SNPs. Top loci were subsequently identified by merging any SNPs in close proximity (< 250 kb) 
into a single genomic locus such that an individual locus could include multiple independent SNPs 
at r2 < 0.1. We depict only the significant loci (referred to as hits throughout the paper) in the 
Miami plots, but report independent significant SNPs in supplementary tables. This same pipeline 
was used for the full set of univariate summary statistics (i.e., not listwise deleted across all 11 
traits) in order to produce a comparable set of loci for the univariate disorder GWAS. To determine 
overlap with hits across the factors and disorders, we identified all independent SNPs for the 
psychiatric factors that were in LD (r2 > 0.6) with independent SNPs for the individual disorders. 
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We report univariate hits and consider overlap with identified factor hits using the European 
ancestry summary statistics used as input to Genomic SEM. Therefore, the total number of 
univariate hits will differ from prior reports utilizing transethnic analyses. As LD structure can 
vary across different cohorts, we also considered hits to be overlapping (in LD) if loci from the 
univariate disorder GWAS were within a 250 kb window (125 kb on either side of the index 
variant) of loci identified for the psychiatric factors or omnibus test.  
 
Comparison of Results to CDG2. The factor analytic results, with additional disorders and larger 
GWAS sample sizes, largely replicate findings from PGC Cross-Disorder Group 2 (PGC-
CDG2).32 More specifically, PGC-CDG2 reported factors representing compulsive, psychotic, and 
neurodevelopmental disorders, which correspond closely to our first three factors. Our 
identification of an Internalizing factor can largely be attributed to the inclusion of ANX, and to a 
lesser extent PTSD, in addition to MDD in the current analysis. It is of note that both TS and 
ALCH evinced the lowest factor loadings, indicating the most distinct genetic etiology among the 
11 disorders in this model.  
 
We next consider overlap with respect to GWAS results, comparing our findings to the 109 
pleiotropic (i.e., associated with more than one disorder irrespective of directionality) and 146 total 
hits from PGC-CDG2.32 The unstructured multivariate GWAS recaptures 69 of the 109 (63.3%) 
pleotropic loci and 97 of the 146 (66.4%) total loci from PGC-CDG2. For the structured, factor 
model GWAS, of the 109 pleiotropic hits from PGC-CDG2, none were in LD with hits for the 
Compulsive disorder factors, 52 hits were in LD with hits for the Psychotic disorders factor, 4 hits 
were in LD with hits for the Neurodevelopmental disorders factor, and 14 hits were in LD with 
hits for the Internalizing disorders factor. As 5 of these overlapping hits were redundant across the 
factors, the correlated factors model indicates that 65 of the 109 (59.6%) PGC-CDG2 hits may be 
interpreted as acting pleiotropically via the factors identified here. 
 

Multivariate GWAS Simulations 

 
Simulation Procedure. In order to examine the calibration of Genomic SEM for multivariate 
GWAS, we began by estimating the model implied genetic covariance matrix for a model in which 
rs9314056—a hit for the Internalizing disorders factor and a univariate hit for MDD and ANX—
was specified to predict the four factors from the correlated factors model. Nine different versions 
of this genetic covariance matrix were used to form population generating covariance matrices 
from which individual covariance matrices were simulated using the rmvrnorm function in the 
rockchalk R package. The observed sampling covariance matrix (V) was used for sampling from 
the population matrices, and was subsequently paired with each simulated genetic covariance 
matrix when estimating the model in Genomic SEM. As the V matrix includes squared SEs on the 
diagonal, simulated parameters (e.g., the genetic covariance between MDD and ANX; the 
association between the SNP and PTSD, etc.) were therefore specified to have the same precision 
as in the observed data. This has the intended consequence that the simulations reflect the empirical 
data scenario wherein certain associations are estimated with greater precision, as will often be the 
case when the contributing univariate GWAS was estimated using a larger participant sample. We 
have therefore endeavored to conduct a series of simulations that are both directly relevant to the 
current analyses and more broadly reflect the realistic scenario of differentially powered GWAS 
entered into the same multivariate framework.  
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Genetic covariance matrices were sampled 250 times for nine different population generating 
scenarios, for a total of 2,250 simulations. These nine scenarios consisted of: Scenario 1 in which 
the model implied matrix was unchanged; Scenario 2 in which the covariance between the SNP 
and ALCH was set to 0; Scenario 3 in which the covariance between the SNP and PTSD was set 
to 0; Scenario 4 in which the covariance between the SNP and ANX was set to 0; Scenario 5 in 
which the covariance between the SNP and MDD was set to 0; Scenario 6 in which the covariance 
between the SNP and PTSD, ALCH, and ANX was set to 0; Scenario 7 in which the covariance 
between the SNP and MDD, PTSD, ALCH, and ANX was set to 0; Scenario 8 in which the 
covariance between the SNP and all 11 psychiatric traits was set to 0; and Scenario 9 in which the 
direction of the covariance between the SNP and ANX and ALCH was reversed (i.e., multiplied 
by -1). These nine scenarios were chosen to reflect varying degrees of conformity to the 
Internalizing disorders factor structure, with Scenario 1 exactly matching the model and Scenario 
9 reflecting the most extreme deviation from the model wherein the SNP has directionally 
opposing effects on ALCH and ANX. We include Scenario 8 in addition to Scenario 7 as the 
estimated SNP effects for the Internalizing disorders factor may include some minimal genetic 
signal from the broader correlated factors model. Note that none of the subsequent models 
estimated in Genomic SEM fixed the relationship between a psychiatric trait/factor and SNP to 0, 
nor were the simulated covariance matrices likely to produce a SNP-trait relationship at exactly 0. 
Rather, SNP-trait associations were only set at 0 in the generating population.  
 
In the sections below, we first compare results across the nine different population generating 
scenarios for a factor model multivariate GWAS in Genomic SEM in which the SNP effect was 
specified to predict the four factors from the correlated factors model. We subsequently compare 
these results to those from an unstructured GWAS (discussed further below) in Genomic SEM that 
seeks to provide an exhaustive list of SNPs relevant to the traits of interest. This is in contrast to 
the factor model results that estimates SNP effects specified to operate via the structure of the 
factors. We additionally consider results across three, separate multivariate GWAS methods: 
MTAG,34 N-GWAMA,35 and MA-GWAMA,35 also discussed further below.   
 
Factor Model. We first examined the distribution of estimated SNP effects and QSNP specific 
estimates for the Internalizing disorders factor in Genomic SEM across the nine scenarios. As 
expected, the distribution of estimated SNP effects revealed the strongest signal for Scenario 1 in 
which the population exactly matched the factor model (Supplementary Figure 25), with all 250 
runs producing genome-wide significant hits for the Internalizing disorders factor (i.e., no false 
negatives) and an average p-value for the estimated SNP effect on the factor of 2.51E-10 
(Supplementary Table 11). The signal was also comparable for Scenarios 2 and 3 where the SNP 
association with the two disorders with the smallest factor loadings, ALCH and PTSD, was 0 in 
the population (Supplementary Figures 1 and 3). This was followed by reduced signal when the 
SNP with ANX association was 0 (Scenario 4), the SNP association with PTSD, ANX and ALCH 
was set to 0 (Scenario 6), and the SNP association with MDD was set to 0 (Scenario 5).  
 
A particular concern for the Internalizing disorders factor may be that the larger sample size for 
MDD relative to the other three disorders that load on this factor results in estimated factor SNP 
effects that merely recapitulate the signal for MDD. Scenario 6 was designed to test this concern. 
As can be seen in the distribution of effects (Supplementary Figures 25 and 27) there is a marked 
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downshift in the signal for this scenario when all SNP associations with Internalizing indicators 
except MDD were set to 0 in the population. This demonstrates that while SNP associations with 
a factor will certainly be more influenced by a better powered factor indicator that also has a larger 
factor loading, that the signal is not strictly dominated by this indicator. As would also be expected, 
the signal was particularly attenuated for Scenario 9 when the direction of the SNP association 
with ALCH and ANX was reversed, and was the weakest for Scenarios 7 and 8 in which the SNP 
association with the four Internalizing factor disorders and all 11 disorders were set to 0 in the 
population. Moreover, there were no factor hits (i.e., no false positives) in the latter two scenarios, 
and all SNPs in Scenario 9 were estimated as hits for QSNP. 
 
The trends for QSNP were also in the expected directions. More specifically, there was a clear null 
signal for QSNP for Scenario 1 for which the model matched the population (Supplementary Figure 
28), no QSNP hits (i.e., no false positives) and an average QSNP p-value of .560. There was a similar 
absence of signal for Scenarios 2 and 3, also with no QSNP hits and no deviation from the expected 
p-values in the QQ-plot. In addition, there was very little signal for Scenarios 7 and 8 where trait 
and SNP associations were at 0. This is also expected, as estimated SNP associations that are 
consistently near 0 across indicators that load on the same factor are, in fact, not hugely discrepant 
from the factor model. QSNP signal increased for the scenarios that more strongly deviated from 
the structure, in which ANX, MDD, or PTSD, ALCH and ANX were 0 in the generating 
population. The signal was by far the largest for Scenario 9 (Supplementary Figure 28) in which 
the directionality of the SNP effect was reversed for ANX and ALCH, with 100% of the 250 runs 
estimated as genome-wide significant QSNP hits. This is the scenario that deviated strongest from 
the factor model and, in line with observation, is expected to pick up on the largest QSNP signal.  
 
Comparing Genomic SEM to Other Multivariate Methods. In the absence of other summary 
statistics based SEM methods, we sought to perform a comparison of Genomic SEM to three of 
the most closely related multivariate methods: MTAG,34 N-GWAMA,35  and MA-GWAMA.35  
These methods were considered most similar to Genomic SEM in that they also account for 
unknown degrees of sample overlap via the bivariate LDSC intercept and produce results by 
statistically incorporating the estimated genetic covariance across included traits. We additionally 
compare results to an unstructured model in Genomic SEM that seeks to identify an exhaustive set 
of SNPs relevant to the traits of interest, irrespective of directionality. MTAG, N-GWAMA, and 
MA-GWAMA, utilized only the four internalizing disorder indicators (ANX, PTSD, ALCH, 
MDD) to mirror the factor model simulation results presented above for the Internalizing disorders 
factor. Before comparing simulation results across methods, we first provide a brief overview of 
each method and how results were produced using our simulation procedure. We refer to the reader 
to the original articles for further details on estimation procedures and statistical properties for 
each method.  
 
Unstructured Model. We estimate SNP effects via an unstructured model in Genomic SEM by 
calculating a model c2 difference test for a model in which the SNP is allowed to have direct 
regression relations with each of the 11 disorders (i.e., a fully saturated model) against a null model 
in which the SNP is associated with none of the disorders. This omnibus test is c2 distributed with 
11 df, and quantifies evidence for an overall effect of the SNP on any subset of the disorders, 
irrespective of the patterning or directionality of the effects. These models do not include any 
higher order factors and are meant to provide an exhaustive list of SNPs associated with included 
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traits. All 11 disorders were included for the unstructured models, despite choosing simulation 
parameters for a SNP that is specifically relevant to the Internalizing disorder factor and indicators. 
By including all 11 disorders, the simulations mirror the real data analyses conducted and provide 
a more conservative test of the unstructured GWAS approach. That is, if the goal is to identify a 
comprehensive set of associated SNPs, it is most informative to examine the performance of the 
unstructured models for scenarios in which the SNP affects only a subset of the included traits.  
 
Multi-trait Analysis of GWAS (MTAG).34 MTAG works by leveraging the shared genetic 
information across traits, as indexed by the LDSC genetic covariance, to increase power for a 
particular trait. The MTAG model was specified in Genomic SEM in order to directly use the 
simulated genetic covariance matrices for analyses. We have shown previously that MTAG 
specified in Genomic SEM produces estimates that are correlated at > .99 with summary statistics 
produced from the original MTAG software.30 We specified MDD to be the MTAG “target” and 
PTSD, ADHD, and ANX as the secondary traits used to boost signal; a schematic of the MTAG 
model for MDD as estimated in Genomic SEM is depicted in Supplementary Figure 29.  
 
Model Averaging GWAMA (MA-GWAMA).35 MA-GWAMA functions by first estimating a 
manifold of models that specify the simple regression relationship between the SNP and a set of 
traits using distinct design matrices, X. Mirroring the original MA-GWAMA approach, X is  
composed of two vectors: a unit vector, and a dichotomously coded (0, 1) vector in which the 
coding varies across the models, such that each model allows for the existence of two distinct 
genetic effects across subsets of traits. The estimates from these models are then aggregated using 
weights derived from the fit of the model, as indexed using AICC. In order to mirror the format of 
results expected by the software, all simulated SNP-phenotype covariances and corresponding 
standard errors were transformed into SNP-phenotype regressions using the simulated SNP 
variance. As with MTAG, we report MA-GWAMA results for MDD from models that additionally 
included PTSD, ADHD, and ANX.  
  
N-Weighted Multivariate GWAMA (N-GWAMA).35 N-GWAMA produces a single 
multivariate test statistic that is computed as the weighted sum of test-statistics taking into account 
both sample overlap and the genetic covariance across included traits. Reported simulation results 
then reflect a weighted aggregate across MDD, PTSD, ADHD, and ANX, as opposed to an updated 
test statistic for MDD as in the case of MA-GWAMA and MTAG. The SNP-phenotype 
covariances were also transformed to SNP-phenotype regressions to mirror the expected format of 
results for the N-GWAMA software.  
 
We highlight results for a few key scenarios here. For Scenario 1, in which the generating 
population matched the specified model, the factor model in Genomic SEM was slightly better 
powered than the other methods (Supplementary Figures 30-31; Supplementary Table 11). For 
Scenario 5, in which the population generating SNP and MDD association was 0, the unstructured 
and factor models were generally better powered than the remaining three methods. Conversely, 
for Scenario 6 in which the population generating SNP association was 0 for all Internalizing traits 
except MDD, the signal was the most reduced for the factor model. This pattern of results is 
consistent with the analytic goals of each individual method. For Scenarios 7 and 8, in which the 
population generating SNP associations were zero, results revealed similarly null signals across 
all methods. Finally, in Scenario 9 in which the SNP association with ANX and ALCH was 
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directionally reversed, the factor model and unstructured model showed the weakest and strongest 
signal, respectively, compared to the other three methods.  
 
These results collectively speak to the fact that, relative to other multivariate methods, the 
multivariate GWAS signal for the factor model is not dominated by any single trait and is 
particularly sensitive to distinct patterns of SNP associations across traits. In addition, an 
unstructured model was especially well-suited for identifying a comprehensive set of SNPs 
associated with the traits. This does not indicate that Genomic SEM should be universally preferred 
over other multivariate genomic methods, as many approaches seek to increase signal for a 
particular target trait. Indeed, consistent with this particular analytic goal the signal was more 
deflated for the MTAG model and MA-GWAMA relative to Genomic SEM when the population 
SNP effect was 0 for the target trait, MDD. For the current investigation, the analytic goals reflect 
identifying SNPs generally associated with psychiatric risk and characterizing the genetic 
underpinnings of convergence and divergence across clusters of psychiatric disorders. The current 
simulations indicate that unstructured and factor models are particularly well-suited for these 
purposes in both an absolute sense and relative to existing alternatives.  
 
Comparing GWAS Results to Prior Findings. Of the 39 unstructured model novel hits, nine have 
not been described for independent studies of psychiatric traits/symptoms and were largely 
characterized by hits previously found for cognitive (e.g., intelligence) or anthropometric traits 
(e.g., BMI; Supplementary Table 13). Moreover, 7 hits were entirely novel in that they were not 
in LD with any previously discovered hits in the GWAS catalogue.  
 
Of the 12 unique psychotic disorders factor hits, Of 8 have been reported as hits in independent 
(or semi-independent) external GWAS of psychiatric traits, 2 were novel for psychiatric traits, and 
2 were entirely novel (Supplementary Table 18). The two novel Neurodevelopmental disorder 
factor hits were in LD with hits previously described for GWAS of psychiatric traits 
(Supplementary Table 21). Among these 6 novel loci, 3 were identified in outside studies of 
psychiatric traits, one has been identified for smoking initiation, and two have yet to be described 
for any trait (Supplementary Table 24). Three of the bifactor p-factor hits were novel for 
psychiatric traits more generally (Supplementary Table 30). 
 

Multivariate Mendelian Randomization Identifies Causal Effects of Alcohol Use. We 
incorporated Mendelian randomization (MR) into a Genomic SEM framework, in order to consider 
models in which the relationships between disorders may partially reflect direct causal effects of 
ALCH on risk for either the individual disorders themselves or the more general factors.  
 
We began by running a single variant MR model using the rs4699743 index variant in the alcohol 
dehydrogenase (ADH1B) gene. The alcohol dehydrogenase variants on chromosome 4q23 are 
arguably the most well-described for any alcohol use phenotype. They are consistently identified 
in ALCH GWAS,36-39 are highly expressed in the liver, and are directly involved in the major 
human ethanol metabolic pathway.40 Moreover, this variant was identified as significant for QSNP 

across all four factors in the correlated factor model. Using the ADH1B SNP as an instrument for 
ALCH, we examined causal effects of ALCH at both the level of the individual disorders and the 
psychiatric factors. For the individual disorders model, the ADH1B variant was specified to 
directly predict ALCH, and ALCH to directly predict the 7 disorders from the Psychotic (BIP; 
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SCZ), Neurodevelopmental (PTSD; ADHD; AUT), and Internalizing disorders (MDD; ANX) 
factors on which ALCH also loaded. A separate model that examined the causal effects of ALCH 
on the psychiatric factors, also specified ADH1B to predict ALCH, but specified ALCH to directly 
predict the Psychotic, Neurodevelopmental, and Psychotic disorders factors.  
 
The model for individual disorders fit the data well (c2[36] = 151.90, AIC = 235.90, CFI = .978, 
SRMR = .064). This model indicated causal effects of ALCH on BIP (p = .028) and MDD (p = 

.024), but not the remaining disorders (Figure S28A). The model for the factors also fit the data 
well (c2[40] = 156.70, AIC = 232.70, CFI = .978, SRMR = .064), and indicated a causal effect of 
ALCH on the Internalizing disorders factor (p = .031), but not the Psychotic or 
Neurodevelopmental disorders factors (Supplementary Figure 39). We went on to examine 
whether these causal estimates would persist when using multiple instruments for ALCH identified 
through external GWAS. 
 
For multi-variant MR, we began by selecting instruments for ALCH using the 10 loci identified in 
an independent discovery GWAS of ALCH conducted in the Million Veterans Project.41 We 
removed two SNPs (rs1421085; rs4936277) based on weak SNP associations for the ALCH PGC 
GWAS , UKB GWAS, and meta-analysis GWAS of the two cohorts. Among the remaining 8 
SNPs, 3 SNPs (rs5860563, rs1229984, rs61902812) were not present in the current set of summary 
statistics across the 11 disorders. For these 3 SNPs, we used LD proxies that were within the same 
gene region and confirmed that these proxy SNPs showed strong associations with ALCH.  
 
Multi-variant MR allows us to relax a core assumption of univariate MR by modeling potential 
pleiotropy wherein a subset of the SNPs that act on ALCH are also allowed to directly affect the 
downstream disorders or factors. To this end, we adopted methods for Multiple Indicator Multiple 
Cause (MIMIC) modeling42 to iteratively identify direct paths from the SNP to the disorders or 
factors. This was done in two phases. In Phase 1, a baseline model was estimated in which no 
pleiotropic paths were allowed. In Phase 2, all of the Phase 1 estimates were fixed, and the residual 
variances and covariances between all SNPs and disorders or factors was estimated. The Phase 2 
model produces point estimates and standard errors that are equivalent to the difference between 
the observed genetic covariance matrix and the Phase 1 model-implied genetic covariance matrix. 
A direct path corresponding to the most significant residual effect was then added to the model to 
create a new baseline model. These paths between the SNPs and the disorders or factors were 
added one by one until they no longer reached a significance threshold of p < .01. We chose the 
threshold of p < .01 in our test for pleiotropy so as to maintain consistency with other multivariant 
MR approaches.43  
 
For the individual disorders, we began with a baseline model in which the 8 SNPs selected as 
instruments predicted ALCH, and ALCH predicted the 7 disorders from the Psychotic, 
Neurodevelopmental, and Internalizing disorders factors on which ALCH also loaded. We note 
that these models directly accounted for LD across the 8 near-independent variants by directly 
modeling their correlation structure. LD across the variants was obtained from the 1000 Genomes 
European Phase 3 sample. Our iterative two-phase procedure identified 7 additional direct 
(pleiotropic) paths from individual SNPs to disorders. This final model (Supplementary Figure 40) 
provided better fit to the data (c2[99] = 240.47, AIC = 422.47, CFI = .976, SRMR = .043) than the 
original baseline model (c2[106] = 453.17, AIC = 621.17, CFI = .942, SRMR = .044). In line with 
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results for ADH1B alone, results indicated causal effects of ALCH on MDD (p = .037) and BIP 
(p = .046), but not the remaining disorders.  
 
Using the same general procedure, we examined causal effects of ALCH at the level of the 
psychiatric factors. The baseline model included the 8 SNPs predicting ALCH, along with ALCH 
predicting the Psychotic, Neurodevelopmental, and Internalizing disorders factors. Our iterative 
two-phase procedure identified 6 additional direct paths from SNPs to factors for the same SNPs 
identified with pleiotropic pathways for the individual traits. This model (Supplementary Figure 
40) provided better fit (c2[104] = 249.33, AIC = 421.33, CFI = .976, SRMR = .043) relative to the 
baseline model (c2[110] = 456.92, AIC = 616.92, CFI = .942, SRMR = .044). Results indicated no 
significant causal effects of ALCH on the factors. Collectively, these results suggest causal effects 
of ALCH on MDD and BIP. 
 
Comparison of LDSC and S-LDSC. For psychiatric traits, the mean ratio of non-redundant 
elements in the genetic covariance matrix, calculated as LDSC over S-LDSC, was 1.029 and 1.268 
for heritabilities and genetic covariances, respectively. That is, generally larger estimates were 
obtained for LDSC, though the difference was fairly minimal. The unstandardized regressions of 
S-LDSC predicting LDSC summary statistics from the correlated factors multivariate GWAS also 
indicated close correspondence between the two methods: compulsive disorders, beta = .84, 
intercept = .07; psychotic disorders, beta = .98, intercept = -.006; neurodevelopmental disorders, 
beta = .96, intercept = .005; and internalizing disorders, beta = .96, intercept = .006. These results 
indicate a trend of closer correspondence between LDSC and S-LDSC multivariate GWAS 
estimates for factors defined by higher powered univariate indicators.  
 
Multivariate GWAS using S-LDSC. For the unstructured multivariate GWAS, S-LDSC—based 
analyses produced 151 hits, 123 of which were in LD with univariate hits. Of the 109 pleiotropic 
CDG2 hits, 63 were identified for the omnibus test.  
 
We did not identify any hits for the Compulsive disorders factor or its QSNP statistic. 89 
independent loci were genome-wide significant (p < 5 × 10−8) for the Psychotic disorders factor. 
Of the 89 loci, 12 were not previously identified in any of the contributing univariate GWASs, and 
7 of these 12 were not identified as either genome-wide significant or suggestive of significance 
(p < 1 × 10−5) in a separate, previously published GWAS of psychiatric traits. The majority of 
these 7 novel loci were previously found to be associated with some aspect of cognitive 
performance (e.g., math ability; Supplementary Table 34). QSNP results for the Psychotic disorders 
factor produced 10 independent loci, including two that were only genome-wide significant 
univariate hits for SCZ (rs28637922; rs1150711).  
 
For the neurodevelopmental disorders factor, S-LDSC—based analyses produced identified 8 
significant loci, 3 of which were not significant for any of the univariate traits. These 3 loci have 
previously been described in outside studies of the same trait, or were near genome-wide 
significant for summary statistics included in the present analyses (Supplementary Table 38). 
Neurodevelopmental QSNP results revealed 7 independent loci, one of which was significant for 
only AUT (rs7844805).  
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Finally, for the Internalizing disorders factor we identified 29 genome-wide significant loci, 2 of 
which were not in LD with any of the univariate hits. Of these two, a single locus (rs1994375) has 
not been previously described for any outside traits (Supplementary Table 41). Internalizing QSNP 

results revealed 6 independent loci, two of which were also identified as significant for the 
Neurodevelopmental and Psychotic disorders QSNP metric. These two QSNP loci consisted of one 
locus that was significant for ALCH (rs28712821) and one locus that was significant for both 
ALCH and SCZ (rs71621626). An additional Internalizing QSNP locus was also significant for the 
Neurodevelopmental QSNP statistic and a univariate hit for ALCH (rs3114045).  
 
Of the 109 pleiotropic hits from CDG2, 49 Psychotic disorders factor hits were in LD, 4 
Neurodevelopmental hits were in LD, and 10 Internalizing hits were in LD. As 4 of these CDG2 
hits were redundant across the factors S-LDSC-based analyses indicate that a total of 60 of the 146 
(55%) of the CDG2 hits may be interpreted as acting pleiotropically via the factors identified here. 
Five hits from the correlated factors were in LD were across the factors, and 2 hits were in LD 
with a QSNP hit. In total, we therefore discover 119 independent loci that are likely to operate 
through pleiotropic mechanisms, 14 of which were novel relative to the univariate traits. 
Furthermore, accounting for LD across factor-specific QSNP hits, we identify 14 independent Q 
hits that do not conform to the identified factor structure, many of which appeared to operate 
through pathways unique to ALCH. 

 
Quality Control Procedures  

 
LD-Score Regression. Quality control (QC) procedures for producing the genetic covariance (S) 
and sampling covariance (VS) matrix followed the defaults in LDSC. This included removing SNPs 
with an MAF < 1%, information scores (INFO) < .9, SNPs from the MHC region, and filtering 
SNPs to HapMap3. The LD scores used for the analyses presented were estimated from the 
European sample of 1000 Genomes, but restricted to HapMap3 SNPs as these tend to be well-
imputed and produce accurate estimates of heritability. EFA and CFA analyses using odd and even 
chromosomes, respectively, utilized M—reflecting the number of SNPs in the original LDSC 
equation9—for just the odd or even chromosomes. 
 
Multivariate GWAS. To obtain summary statistics for multivariate GWAS, we used the default 
QC procedures in Genomic SEM of removing SNPs with an MAF < .005 in the 1000 Genomes 
Phase 3 reference panel and SNPs with an INFO score < 0.6 in the univariate GWAS summary 
statistics. These are currently the default QC procedures for the GenomicSEM R package. Using 
these QC steps, there were 4,775,763 SNPs present across all eleven sets of European ancestry 
summary statistics. Prior to running any multivariate GWAS, all summary statistics were 
standardized with respect to the total variance in the outcome using the sumstats function in 
GenomicSEM and corrected for genomic inflation using the conservative approach of multiplying 
the standard errors by the univariate LDSC intercept when the intercept was above 1.  
 
Extended Limitations. It is important to note a number of limitations of the current analytic 
framework. Stratified Genomic SEM inherits the assumptions and limitations of traditional S-
LDSC.44 This includes using an additive model of gene action that does not consider the role of 
epistatic effects, and only modelling the covariance among relatively common variant SNPs for 
which LD information is available. In future work, larger univariate GWAS coupled with Stratified 
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Genomic SEM would allow for fitting qualitatively distinct structural models for individual 
annotations. It is conceivable, for example, that a simpler two-factor model may best describe 
genetic covariance in evolutionarily conserved regions, whereas a five-factor model may reflect 
the underlying architecture in genes that are intolerant to protein truncation. The statistical tools 
developed here would allow for testing such hypotheses in future work by relaxing the assumption 
that a single structural model characterizes the genetic relationships across psychiatric disorders. 
Moreover, our results may have been influenced by the phenotyping and case-ascertainment 
methods used. Cai et al. (2020)45 have specifically reported that psychiatric phenotypes derived 
using minimal phenotyping (defined as “individuals’ self-reported symptoms, help seeking, 
diagnoses or medication”) may produce GWAS signals of low specificity. Although our sensitivity 
analyses suggested minimal differences when excluding GWAS that used self-report cohorts this 
issue should continue to be explored in future work. The current findings at all levels of analysis 
(biobehavioral, functional, SNP) should also be interpreted with respect to the power of the 
individual disorders used to define the factors. In particular, the paucity of GWAS hits and 
significant enrichment findings for the Compulsive disorders factor should be considered in the 
context of the relatively low power for the disorders that define this factor. The current findings at 
all levels of analysis (biobehavioral, functional, SNP) should also be interpreted with respect to 
the power of the individual disorders used to define the factors. In particular, the paucity of GWAS 
hits and significant enrichment findings for the Compulsive disorders factor should be considered 
in the context of the relatively low power for the disorders that define this factor. Future analyses 
may also benefit from evaluating these findings using a set of traits that is balanced with respect 
to statistical power. Additionally, it was not possible to validate our findings in independent 
datasets owing to the fact that secondary datasets of sufficient sample size do not yet exist for 
many of the included disorders. The replicability of these findings will of course be critical to 
examine in future analyses. It will also be informative for future research to examine further the 
effect of heterogeneity in how samples are ascertained and disorders are assessed on cross- and 
within-disorder relationships.46 Application of detailed and standardized assessment protocols to 
large, representative samples would of course be ideal. More pragmatically, future work may apply 
multivariate genetic approaches, such as those showcased here, at the level of individual 
symptoms.47 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Stratified Genomic SEM 23 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Sensitivity Analysis Excluding GWAS Utilizing Self-report Cohorts. Panel 
A: Values below the diagonal depict genetic correlations estimated using LDSC excluding GWAS that 
included cohorts for which the psychiatric phenotypes were based primarily on self-report items not 
directly assessed by a clinician. We excluded the UK Biobank samples from MDD, ANX, and ALCH, 
and the 23andMe cohorts from MDD and ADHD. Values above the diagonal reflect genetic correlations 
estimated using all cohorts subtracted from the restricted cohort genetic correlations. Therefore, negative 
values for ANX above the diagonal indicate that genetic correlations between ANX and the remaining 
traits were generally estimated as larger when using all cohorts. Panel B: Figure presents standardized 
results for the correlated factors model fit to the restricted cohorts genome-wide LDSC genetic covariance 
matrix. Panel C: Figure presents standardized results for the correlated factors model identified using 
EFA in the restricted cohort fit to the restricted cohort genome-wide LDSC genetic covariance matrix. 
ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; TS = Tourette 
syndrome; PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism spectrum 
disorder; ALCH = problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; BIP = 
bipolar disorder; SCZ = schizophrenia. 
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Supplementary Figure 2a. Histogram of Hits Excluding Self-report Cohorts. Panels depict the hits 
identified using the full dataset when analyzed using the restricted dataset for the Compulsive (panel A), 
Psychotic (panel B), Neurodevelopmental (panel C), and Internalizing disorders (panel D) factors. Blue 
bars depict the factor hits, while green bars depict 500 randomly selected SNPs. In all panels, there is 
clear signal maintained in the restricted dataset for the factor hits identified using the unrestricted datasets 
relative to the 500 randomly selected SNPs.  
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Supplementary Figure 2b. Scatterplot of Betas for Full and Restricted Dataset. Panels depict the hits 
identified using the full dataset for the estimated factor betas for the full dataset on the x-axis and the 
estimated factor betas for the datasets excluding self-report cohorts on the y-axis. Results are shown for 
the Psychotic (panel A), Neurodevelopmental (panel B), and Internalizing disorders (panel C) factors. 
Results are not depicted for the Compulsive disorders factor as there was only 1 hit identified for this 
factor. Red lines indicate the full dataset predicting itself, with values above the line estimated as larger in 
the full dataset. The scatterplots show strong concordance in estimated effects across the full and 
restricted dataset, with high correlations across the estimates for the full and restricted dataset for the 
Psychotic (r > .99), Neurodevelopmental (r > .99), and Internalizing disorders factors (r = .94).  
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Supplementary Figure 3. Mapped Genetic Correlations with Brain Morphology across Psychiatric Factors. 
Panels depict the significance of genetic correlations between the psychiatric factors and brain volume for 
compulsive disorders (panel A), psychotic disorders (panel B), neurodevelopmental disorders (panel C), and the 
internalizing disorders (panel D) factor from the correlated factors model. Panel E depicts genetic correlations with 
the second-order, hierarchical p-factor. For all panels, darker shading indicates more significant effects. Cortical 
and sub-cortical regions of interest are plotted according to the Desikan-Killiany-Tourville atlas, shown on a single 
manually-edited surface.48 
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Supplementary Figure 4a. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4b. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4c. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4d. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4e. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4f. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4g. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4h. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4i. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4j. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4k. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 4l. Genetic Correlations with Brain Morphology across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 2 of the 101 brain morphology metrics and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For psychiatric traits 
that loaded on multiple latent factors (e.g., ALCH), the traits are colored to be grouped with the factor that they 
loaded on the strongest. Genetic correlations depicted with a dashed outline were significant at a Bonferroni 
corrected threshold for model comparisons indicating heterogeneity (i.e., significant QTrait) across the factor 
indicators in their genetic correlations with the brain morphology metric. The sample size for all brain morphology 
metrics was N= 19,629. The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), 
OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 
77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 
24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 5. Model Comparisons for Biobehavioral Traits used to produce QTrait. Panel A 
depicts the model run to obtain a model c2 for a model in which the biobevioral trait (X) predicted all four, 
correlated psychiatric factors. Panel B depicts the follow-up model for the compulsive disorders factor, where trait 
X predicts the indicators of the compulsive disorders factor, in addition to the remaing three factors. Model c2  

difference tests between the model c2  for the model in panel A and model c2 in panel B index whether the pattern 
of correlations with trait X is well-accounted for by the factor. We term this heterogeneity index at the level of 
external correlates Qtrait. In order to produce model c2  difference tests for each factor, the model in Panel B was re-
specified three additional times, such that trait X predicted the factor indicators for the remaining three factors. 
Panel C depicts the model run to obtain model c2  for the hierarchical factor model. Panel D depicts the follow-up 
model in which the trait directly predicts the four, first-order factors. As with the top two panels, comparing the 
model c2 across panels C and D indexes whether the pattern of correlations with trait X across the four, first-order 
factors is well-accounted for by the second-order, p-factor.  
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Supplementary Figure 6. Genetic Correlations with Neuropsychiatric Traits across Psychiatric Factors. Bar 
plots depict point estimates for genetic correlations with the 11 neuropscyhiatric complex traits with error bars 
depicted +/- 1.96 SEs. Correlations with the complex traits are depicted for each of the four psychiatric factors 
from the correlated factors model or the second-order, p-factor from the hierarchical model. Bars depicted with a 
dashed outline were significant at a Bonferroni corrected threshold for model comparisons indicating heterogeneity 
(i.e., significant QTrait) across the factor indicators in their genetic correlations with the outside trait. Bars depicted 
with an * above produced a genetic correlation that was significant at a Bonferroni corrected threshold and were 
not significantly heterogeneous. The total sample sizes were: iPSYCH cross-disorder (N= 65,534), stress-related 
disorder (N= 29,056), lifetime depressive symptoms (N= 126,494), lifetime psychotic symptoms (N= 126,494), 
lifetime manic symptoms (N= 126,494), suicide attempt (N= 50,265), antisocial behavior (N= 16,400), insomnia 
(N= 386,533), cannabis use disordeor (N= 357,806), Alzheimer’s disease (N= 17,375), family relationship 
satisfcation (N= 361,194), and subjective well-being (N= 204,966). The effective sample size for the factors was: 
Compulsive Factor (N= 19,108), Psychotic Factor (N= 87,138), Neurodevelpomental Factor (N= 55,932), 
Internalizing Factor (N= 455,340), and hierarchical p-factor (N= 667,343).   
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Supplementary Figure 7a. Genetic Correlations with Complex Traits across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 49 biobehavioral complex traits and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample size for the complex traits was: Height (N= 709,703), age at 
menarche (N= 194,174), waist-to-hip ratio (N= 697,729), body mass index (N= 806,833), age at first facial hair 
(N= 167,020), age at menopause (N= 194,174), childhood intelligence (N= 12,441), educational attainment (N= 
22,572), and inttelligence (N= 269,867). The sample size for the psychiatric traits was: AN (N= 16,992 cases and 
55,525 controls), OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 
53,386 cases and 77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), 
ADHD (N= 24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 
cases and 26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 
69,883 controls).  
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Supplementary Figure 7b. Genetic Correlations with Complex Traits across Psychiatric Factors. . Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 49 biobehavioral complex traits and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample size for the complex traits was: blood pressure (N= 361,194), 
asthma (N= 361,194), back pain (N= 361,194), chronic kidney disease (N= 118,147), coronary artery disease (N= 
547,261), Parkinson’s disease (N= 449,056), Rheumatoid arthritis (N= 58,284), Type 2 Diabetes (N= 898,130), 
and cancer (N= 361,194). The sample size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 
controls), OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 
cases and 77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD 
(N= 24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 
26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 
controls).  
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Supplementary Figure 7c. Genetic Correlations with Complex Traits across Psychiatric Factors. . Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 49 biobehavioral complex traits and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample sizes were: Alzheimer’s disease (N= 17,375), antisocial 
behavior (N= 16,400), lifetime depressive symptoms (N= 126,494), insomnia (N = 386,533), lifetime psychotic 
symptoms (N= 126,494), lifetime manic symptoms (N = 126,494), stress-related disorder (N = 29,056), subjective 
well-being (N = 204,966), and suicide attempt (N = 50,265). The sample size for the psychiatric traits was: AN 
(N= 16,992 cases and 55,525 controls), OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 
controls), SCZ (N= 53,386 cases and 77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 
176,024 observations), ADHD (N= 24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 
controls), PTSD (N= 12,255 cases and 26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and 
ANX (N= 30,992 cases and 69,883 controls).  
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Supplementary Figure 7d. Genetic Correlations with Complex Traits across Psychiatric Factors. . Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 49 biobehavioral complex traits and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample sizes were: family relationship satisfcation (N = 361,194), 
cannabis use disorder (N= 357,806), iPSYCH cross-disorder (N = 65,534), agreeableness (N = 59,176), 
conscientiousness (N = 59,176), openness (N = 59,176), extraversion (N = 59,176), neuroticism (N = 63,661), 
automobile speeding propensity (N = 404,291). The sample size for the psychiatric traits was: AN (N= 16,992 
cases and 55,525 controls), OCD (N= 2,688 cases and 7,037 controls), TS (N= 4,819 cases and 9,488 controls), 
SCZ (N= 53,386 cases and 77,258 controls), BIP (N= 20,352 cases and 31,358 controls), ALCH (N= 176,024 
observations), ADHD (N= 24,116 cases and 91,557 controls), AUT (N= 18,382 cases and 27,969 controls), PTSD 
(N= 12,255 cases and 26,338 controls), MDD (N= 249,227 cases and 553,712 controls), and ANX (N= 30,992 
cases and 69,883 controls).  
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Supplementary Figure 7e. Genetic Correlations with Complex Traits across Psychiatric Factors. Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 9 of the 49 biobehavioral complex traits and the 11 psychiatric traits. The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample sizes were: ever cannabis (N = 162,082), cigarettes per day (N 
= 263,954), drinks per week (N = 537,349), smoking cessation (N = 312,821), maternal smoking around birth (N 
= 361,194), sports club or gym attendance (N = 361,194), pub or social club attendance (N = 361,194), religious 
group attendance (N = 361,194), adult education class attendance (N = 361,194). The sample size for the 
psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), OCD (N= 2,688 cases and 7,037 controls), TS 
(N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 77,258 controls), BIP (N= 20,352 cases and 
31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 24,116 cases and 91,557 controls), AUT (N= 
18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 26,338 controls), MDD (N= 249,227 cases and 
553,712 controls), and ANX (N= 30,992 cases and 69,883 controls).  
 



Stratified Genomic SEM 46 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 7f. Genetic Correlations with Complex Traits across Psychiatric Factors. . Panels 
depict the genetic correlation point estimates in bar plots, with error bars depicting +/- 1.96 SEs,  for associations 
with 4 of the 49 biobehavioral complex traits and the 11 psychiatric traits.The 11 psychiatric traits are grouped 
according to the correlated factor structure, with compulsive disorders depicted in light blue, psychotic disorders in 
red, neurodevelopmental disorders in golden yellow, and internalizing disorders in purple. For traits that loaded on 
multiple factors (e.g., ALCH), they are colored to be grouped with the factor that they loaded on the strongest. 
Genetic correlations depicted with a dashed outline were significant at a Bonferroni corrected threshold for model 
comparisons indicating heterogeneity (i.e., significant QTrait) across the factor indicators in their genetic 
correlations with the outside trait. The total sample sizes were: own housing outright (N = 361,194), household 
income (N = 112,151), townsend deprivation index (N = 112,151), parental lifespan (N = 640,189). The sample 
size for the psychiatric traits was: AN (N= 16,992 cases and 55,525 controls), OCD (N= 2,688 cases and 7,037 
controls), TS (N= 4,819 cases and 9,488 controls), SCZ (N= 53,386 cases and 77,258 controls), BIP (N= 20,352 
cases and 31,358 controls), ALCH (N= 176,024 observations), ADHD (N= 24,116 cases and 91,557 controls), 
AUT (N= 18,382 cases and 27,969 controls), PTSD (N= 12,255 cases and 26,338 controls), MDD (N= 249,227 
cases and 553,712 controls), and ANX (N= 30,992 cases and 69,883 controls).  
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Supplementary Figure 8a. Population generating and observed zero-order (S0) covariance 
matrices. The first column depicts the genetic covariance matrix in the generating population. The second 
column depicts the average observed covariance across the 100 simulations runs. The last column reflects 
the difference between the population matrix and average observed covariance matrix. For the zero-order 
matrices, estimates are expected to be biased in the sense that an individual partition will be affected by 
population generating covariances in overlapping annotations. Results are shown for the DHS Peaks (top 
row), Fetal DHS (middle row) and H3K27ac (bottom row) annotations.  
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Supplementary Figure 8b. Population generating and observed zero-order (S0) covariance matrices. The first 
column depicts the genetic covariance matrix in the generating population. The second column depicts the average 
observed covariance across the 100 simulations runs. The last column reflects the difference between the population 
matrix and average observed covariance matrix. For the zero-order matrices, estimates are expected to be biased in the 
sense that an individual partition will be affected by population generating covariances in overlapping annotations. 
Results are shown for the H3K9ac Peaks (top row), PromoterUSC (second row), and TFBS (third row) annotations, 
and for the baseline genome-wide (bottom row) annotation containing all SNPs. Results for genome-wide estimates in 
the bottom row are unaffected by overlap with other annotations. 
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Supplementary Figure 9. Distributions of SE ratios. Panels depict mean SE ratios across the 100 
simulations for the for mean SE over the empirical SE across the annotations for the St (right panel) and 
zero-order (left panel) covariance matrices. Average ratios are shown for each cell of the covariance 
matrix for all annotations.  
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Supplementary Figure 10a. Stratified St matrices covariance matrices. The first column depicts the 
genetic covariance matrix in the generating population. The second column depicts the average observed 
covariance across the 100 simulations runs. The last column reflects the difference between the 
population matrix and average observed covariance matrix. As observed, for the St  matrices, estimates 
are expected to be generally unbiased. Results are shown for the DHS Peaks (top row), Fetal DHS 
(middle row) and H3K27ac (bottom row) annotations.  
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Supplementary Figure 10b. Stratified St covariance matrices. The first column depicts the genetic 
covariance matrix in the generating population. The second column depicts the average observed 
covariance across the 100 simulations runs. The last column reflects the difference between the 
population matrix and average observed covariance matrix. As observed, for the St  matrices, estimates 
are expected to be generally unbiased. Results are shown for the H3K9ac Peaks (top row), PromoterUSC 
(second row), TFBS (third row), and genome-wide (bottom row) annotations. Results for genome-wide 
estimates are unaffected by overlap with other annotations as the genome-wide partition includes all 
SNPs. 
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Supplementary Figure 11a. Genomic SEM simulation results for DHS partition. Parameters outside 
of the parentheses indicate those provided in the generating population. In parentheses, we provide the 
average point estimate followed by the ratio of the mean SE estimate across the 100 runs over the 
empirical SE (calculated as the standard deviation of the parameter estimates across the 100 runs). We 
note that SE estimates are expected to be upwardly biased in the standardized case, and for residual 
variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 0).  
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Supplementary Figure 11b. Genomic SEM simulation results for FetalDHS partition. Parameters 
outside of the parentheses indicate those provided in the generating population. In parentheses, we 
provide the average point estimate followed by the ratio of the mean SE estimate across the 100 runs over 
the empirical SE (calculated as the standard deviation of the parameter estimates across the 100 runs). We 
note that SE estimates are expected to be upwardly biased in the standardized case, and for residual 
variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 0). 
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Supplementary Figure 11c. Genomic SEM simulation results for H3K27ac partition. Parameters 
outside of the parentheses indicate those provided in the generating population. In parentheses, we 
provide the average point estimate followed by the ratio of the mean SE estimate across the 100 runs over 
the empirical SE (calculated as the standard deviation of the parameter estimates across the 100 runs). We 
note that SE estimates are expected to be upwardly biased in the standardized case, and for residual 
variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 0). 
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Supplementary Figure 11d. Genomic SEM simulation results for H3K9ac partition. Parameters 
outside of the parentheses indicate those provided in the generating population. In parentheses, we 
provide the average point estimate followed by the ratio of the mean SE estimate across the 100 runs over 
the empirical SE (calculated as the standard deviation of the parameter estimates across the 100 runs).  
We note that SE estimates are expected to be upwardly biased in the standardized case, and for residual 
variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 0). 
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Supplementary Figure 11e. Genomic SEM simulation results for PromoterUSC partition. 
Parameters outside of the parentheses indicate those provided in the generating population. In 
parentheses, we provide the average point estimate followed by the ratio of the mean SE estimate across 
the 100 runs over the empirical SE (calculated as the standard deviation of the parameter estimates across 
the 100 runs). We note that SE estimates are expected to be upwardly biased in the standardized case, and 
for residual variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 
0). 
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Supplementary Figure 11f. Genomic SEM simulation results for TFBS partition. Parameters outside 
of the parentheses indicate those provided in the generating population. In parentheses, we provide the 
average point estimate followed by the ratio of the mean SE estimate across the 100 runs over the 
empirical SE (calculated as the standard deviation of the parameter estimates across the 100 runs). We 
note that SE estimates are expected to be upwardly biased in the standardized case, and for residual 
variances, due to upper or lower limits on the sampling distributions (e.g., residual variance > 0). 
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Supplementary Figure 12a. Genetic Enrichment of Psychiatric Factors for the Baseline Annotations. Figure depict enrichment point estimates, with 
error bars displaying +/- 1.96 SEs, for the compulsive (shown in blue), psychotic (shown in red), neurodevelopmental (shown in gold), and internalizing 
factors (shown in purple) from the correlated factors model and the second-order p-factor from the hierarchical factor model (shown in torqouise) for the 
baseline annotations. Enrichment is indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by the annotation to that 
annotation’s size as a proportion of the genome. The black dashed line reflects the null ration of 1.0, corresponding to no enrichment. Ratios greater than 
1.0 indicate enrichment of pleiotropic signal whereas ratios less than 1.0 indicate depletion of pleiotropic signal. For panels A, C, and D, only the top ten 
annotations across the factors are depicted within each of the functional categories. Error bars depict 95% confidence intervals. For scaling purposes, error 
bars are capped at the y-axis limits for each panel for the compulsive disorders factor; no enrichment estimates were significant for this factor.  The 
effective sample size for the factors was: Compulsive Factor (N = 19,108), Psychotic Factor (N = 87,138), Neurodevelpomental Factor (N = 55,932), 
Internalizing Factor (N = 455,340), and hierarchical p-factor (N = 667,343).   
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Supplementary Figure 12b. Genetic Enrichment of Psychiatric Factors for MAF Bins. Figure depict enrichment point estimates, with error bars 
displaying +/- 1.96 SEs, for the compulsive (shown in blue), psychotic (shown in red), neurodevelopmental (shown in gold), and internalizing factors 
(shown in purple) from the correlated factors model and the second-order p-factor from the hierarchical factor model (shown in torqouise) for the minor 
allele frequency annotations. Enrichment is indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by the annotation to that 
annotation’s size as a proportion of the genome. The black dashed line reflects the null ration of 1.0, corresponding to no enrichment. Ratios greater than 
1.0 indicate enrichment of pleiotropic signal whereas ratios less than 1.0 indicate depletion of pleiotropic signal. For panels A, C, and D, only the top ten 
annotations across the factors are depicted within each of the functional categories. Error bars depict 95% confidence intervals. For scaling purposes, error 
bars are capped at the y-axis limits for each panel for the compulsive disorders factor; no enrichment estimates were significant for this factor.  The 
effective sample size for the factors was: Compulsive Factor (N = 19,108), Psychotic Factor (N = 87,138), Neurodevelpomental Factor (N = 55,932), 
Internalizing Factor (N = 455,340), and hierarchical p-factor (N = 667,343).   
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Supplementary Figure 12c. Genetic Enrichment of Psychiatric Factors for Gene Expression. Figure depict enrichment point estimates, with error 
bars displaying +/- 1.96 SEs, for the compulsive (shown in blue), psychotic (shown in red), neurodevelopmental (shown in gold), and internalizing factors 
(shown in purple) from the correlated factors model and the second-order p-factor from the hierarchical factor model (shown in torqouise) for the gene 
expression annotations. Enrichment is indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by the annotation to that 
annotation’s size as a proportion of the genome. The black dashed line reflects the null ration of 1.0, corresponding to no enrichment. Ratios greater than 
1.0 indicate enrichment of pleiotropic signal whereas ratios less than 1.0 indicate depletion of pleiotropic signal. For panels A, C, and D, only the top ten 
annotations across the factors are depicted within each of the functional categories. Error bars depict 95% confidence intervals. For scaling purposes, error 
bars are capped at the y-axis limits for each panel for the compulsive disorders factor; no enrichment estimates were significant for this factor.  The 
effective sample size for the factors was: Compulsive Factor (N = 19,108), Psychotic Factor (N = 87,138), Neurodevelpomental Factor (N = 55,932), 
Internalizing Factor (N = 455,340), and hierarchical p-factor (N = 667,343).   
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Supplementary Figure 12d. Genetic Enrichment of Psychiatric Factors for Histone Mark Annotations. Figure depict enrichment point estimates, 
with error bars displaying +/- 1.96 SEs, for the compulsive (shown in blue), psychotic (shown in red), neurodevelopmental (shown in gold), and 
internalizing factors (shown in purple) from the correlated factors model and the second-order p-factor from the hierarchical factor model (shown in 
torqouise) for the histone mark annotations. Enrichment is indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by the 
annotation to that annotation’s size as a proportion of the genome. The black dashed line reflects the null ration of 1.0, corresponding to no enrichment. 
Ratios greater than 1.0 indicate enrichment of pleiotropic signal whereas ratios less than 1.0 indicate depletion of pleiotropic signal. For panels A, C, and 
D, only the top ten annotations across the factors are depicted within each of the functional categories. Error bars depict 95% confidence intervals. For 
scaling purposes, error bars are capped at the y-axis limits for each panel for the compulsive disorders factor; no enrichment estimates were significant for 
this factor.  The effective sample size for the factors was: Compulsive Factor (N = 19,108), Psychotic Factor (N = 87,138), Neurodevelpomental Factor (N 
= 55,932), Internalizing Factor (N = 455,340), and hierarchical p-factor (N = 667,343).  
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Supplementary Figure 13a. Enrichment of Baseline Annotations from Correlated Factors Model. The top half 
of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black dashed line 
on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all graphs for the 
correlated factors model are based on increasing significance for the psychotic disorders factor. The scaling of the 
y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown for 
compulsive disorders (panel A) and psychotic disorders (panel B). The effective sample size for the factors was: 
Compulsive Factor (N= 19,108) and Psychotic Factor (N= 87,138).  
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Supplementary Figure 13b. Enrichment of Baseline Annotations from Correlated Factors Model. The top half 
of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black dashed line 
on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all graphs for the 
correlated factors model are based on increasing significance for the Psychotic Disorders factor. The scaling of the 
y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown for 
neurodevelopmental disorders (panel C), and internalizing disorders (panel D). The effective sample size for the 
factors was Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 455,340). 
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Supplementary Figure 14. Enrichment of MAF Annotations from Correlated Factors Model. The top half of 
each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all graphs for the 
correlated factors model are based on increasing significance for the psychotic disorders factor. The scaling of the 
y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown for 
compulsive disorders (panel A), psychotic disorders (panel B), neurodevelopmental disorders (panel C), and 
internalizing disorders (panel D). The effective sample size for the factors was: Compulsive Factor (N= 19,108), 
Psychotic Factor (N = 87,138), Neurodevelpomental Factor (N = 55,932), Internalizing Factor (N = 455,340), and 
hierarchical p-factor (N = 667,343).   
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Supplementary Figure 15a. Enrichment of Gene Expression Annotations from Correlated Factors Model. 
The top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all 
graphs for the correlated factors model are based on increasing significance for the psychotic disorders factor. The 
scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown 
for compulsive disorders (panel A) and psychotic disorders (panel B). The effective sample size for the factors was: 
Compulsive Factor (N= 19,108) and Psychotic Factor (N= 87,138). 
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Supplementary Figure 15b. Enrichment of Gene Expression Annotations from Correlated Factors Model. 
The top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all 
graphs for the correlated factors model are based on increasing significance for the Psychotic Disorders factor. The 
scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown 
for neurodevelopmental disorders (panel C), and internalizing disorders (panel D). The effective sample size for the 
factors was Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 455,340). 
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Supplementary Figure 16a. Enrichment of Histone Marks Annotations from Correlated Factors Model. The 
top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all 
graphs for the correlated factors model are based on increasing significance for the psychotic disorders factor. The 
scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown 
for compulsive disorders (panel A) and psychotic disorders (panel B). The effective sample size for the factors was: 
Compulsive Factor (N= 19,108) and Psychotic Factor (N= 87,138). 

 
 

 
 
 
 
 



Stratified Genomic SEM 68 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 16b. Enrichment of Histone Marks Annotations from Correlated Factors Model. The 
top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all 
graphs for the correlated factors model are based on increasing significance for the Psychotic Disorders factor. The 
scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown 
for neurodevelopmental disorders (panel C), and internalizing disorders (panel D). The effective sample size for the 
factors was Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 455,340). 
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Supplementary Figure 17a. Enrichment of Brain Cell Annotations from Correlated Factors Model. The top 
half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all graphs for 
the correlated factors model are based on increasing significance for the psychotic disorders factor. The scaling of 
the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown for 
compulsive disorders (panel A) and psychotic disorders (panel B). The effective sample size for the factors was: 
Compulsive Factor (N= 19,108) and Psychotic Factor (N= 87,138). 
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Supplementary Figure 17b. Enrichment of Brain Cell Annotations from Correlated Factors Model. The top 
half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across factors, all graphs for 
the correlated factors model are based on increasing significance for the Psychotic Disorders factor. The scaling of 
the y-axis across panels differs due to widely discrepant ranges in CIs across factors. Estimates are shown for 
neurodevelopmental disorders (panel C), and internalizing disorders (panel D). The effective sample size for the 
factors was Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 455,340). 
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Supplementary Figure 18a. Enrichment of Brain Cell ×	PI Gene Annotations from Correlated Factors 
Model. The top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. 
The black dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the 
log10(p) values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across 
factors, all graphs for the correlated factors model are based on increasing significance for the psychotic disorders 
factor. The scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. 
Estimates are shown for compulsive disorders (panel A) and psychotic disorders (panel B). The effective sample 
size for the factors was: Compulsive Factor (N= 19,108) and Psychotic Factor (N= 87,138). 
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Supplementary Figure 18b. Enrichment of Brain Cell ×	PI Gene Annotations from Correlated Factors 
Model. The top half of each panel depicts the enrichment point estimates, with error bars depicting +/- 1.96 SEs. 
The black dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the 
log10(p) values. The red dashed line on the bottom half reflects log10(p = .05). For comparative purposes across 
factors, all graphs for the correlated factors model are based on increasing significance for the Psychotic Disorders 
factor. The scaling of the y-axis across panels differs due to widely discrepant ranges in CIs across factors. 
Estimates are shown for neurodevelopmental disorders (panel C), and internalizing disorders (panel D). The 
effective sample size for the factors was Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 
455,340). 
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Supplementary Figure 19a. Enrichment of Baseline Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the 
hierarchical p-factor (panel A). The effective sample size for the p-factor was N = 667,343.  
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Supplementary Figure 19b. Enrichment of Baseline Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the compulsive disorders (panel B) and psychotic disorders (panel C) factors after accounting for variance 
explained by the p-factor. The total effective sample size for the factors was: Compulsive Factor (N= 19,108) and 
Psychotic Factor (N = 87,138); however, it is important to note that these are enrichment estimates for the residual 
variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 19c. Enrichment of Baseline Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the neurodevelopmental disorders (panel D) and internalizing (panel C) factors after accounting for variance 
explained by the p-factor. The effective sample size for the factors was Neurodevelpomental Factor (N= 55,932) 
and Internalizing Factor (N= 455,340) ; however, it is important to note that these are enrichment estimates for the 
residual variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 20. Enrichment of MAF Annotations from Hierarchical Model. The top half of each 
panel depicts the enrichment point estimates, with error bars indicating 95% confidence intervals. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to 
widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the hierarchical p-factor (panel A), and the residuals of the 4 factors after accounting for variance explained by the 
p-factor: compulsive disorders (panel B), psychotic disorders (panel C), neurodevelopmental disorders (panel D), 
and internalizing disorders (panel E). The effective sample size for the p-factor was N = 667,343. The total effective 
sample size for the factors was: Compulsive Factor (N = 19,108), Psychotic Factor (N = 87,138), 
Neurodevelpomental Factor (N = 55,932) and Internalizing Factor (N = 455,340); however, it is important to note 
that these are enrichment estimates for the residual variance in the factors such that the effective N for just these 
residual components will be much smaller.   
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Supplementary Figure 21a. Enrichment of Gene Expression Annotations from Hierarchical Model. The top 
half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to 
widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the hierarchical p-factor (panel A). The effective sample size for the p-factor was N = 667,343.  
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Supplementary Figure 21b. Enrichment of Gene Expression Annotations from Hierarchical Model. The top 
half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the compulsive disorders (panel B) and psychotic disorders (panel C) factors after accounting for variance 
explained by the p-factor. The total effective sample size for the factors was: Compulsive Factor (N= 19,108) and 
Psychotic Factor (N = 87,138); however, it is important to note that these are enrichment estimates for the residual 
variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 21c. Enrichment of Gene Expression Annotations from Hierarchical Model. The top 
half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed 
line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The 
red dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to 
widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the residuals of the neurodevelopmental disorders (panel D) and internalizing (panel C) factors after accounting for 
variance explained by the p-factor. The effective sample size for the factors was Neurodevelpomental Factor (N= 
55,932) and Internalizing Factor (N= 455,340) ; however, it is important to note that these are enrichment estimates 
for the residual variance in the factors such that the effective N for just these residual components will be much 
smaller.   
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Supplementary Figure 22a. Enrichment of Histone Marks Annotations from Hierarchical Model. The top half 
of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line 
on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the 
hierarchical p-factor (panel A). The effective sample size for the p-factor was N = 667,343.  
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Supplementary Figure 22b. Enrichment of Histone Marks Annotations from Hierarchical Model. The top half 
of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line 
on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the compulsive disorders (panel B) and psychotic disorders (panel C) factors after accounting for variance 
explained by the p-factor. The total effective sample size for the factors was: Compulsive Factor (N= 19,108) and 
Psychotic Factor (N = 87,138); however, it is important to note that these are enrichment estimates for the residual 
variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 22c. Enrichment of Histone Marks Annotations from Hierarchical Model. The top half 
of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line 
on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the neurodevelopmental disorders (panel D) and internalizing (panel C) factors after accounting for variance 
explained by the p-factor. The effective sample size for the factors was Neurodevelpomental Factor (N= 55,932) 
and Internalizing Factor (N= 455,340) ; however, it is important to note that these are enrichment estimates for the 
residual variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 23a. Enrichment of Brain Cell Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the 
hierarchical p-factor (panel A). The effective sample size for the p-factor was N = 667,343.  
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Supplementary Figure 23b. Enrichment of Brain Cell Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the compulsive disorders (panel B) and psychotic disorders (panel C) factors after accounting for variance 
explained by the p-factor. The total effective sample size for the factors was: Compulsive Factor (N= 19,108) and 
Psychotic Factor (N = 87,138); however, it is important to note that these are enrichment estimates for the residual 
variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 23c. Enrichment of Brain Cell Annotations from Hierarchical Model. The top half of 
each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black dashed line on 
the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) values. The red 
dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs due to widely 
discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the hierarchical 
factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for the residuals 
of the neurodevelopmental disorders (panel D) and internalizing (panel C) factors after accounting for variance 
explained by the p-factor. The effective sample size for the factors was Neurodevelpomental Factor (N= 55,932) 
and Internalizing Factor (N= 455,340) ; however, it is important to note that these are enrichment estimates for the 
residual variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 24a. Enrichment of Brain Cell ×	PI Gene Annotations from Hierarchical Model. The 
top half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs 
due to widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the hierarchical p-factor (panel A). The effective sample size for the p-factor was N = 667,343.  
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Supplementary Figure 24b. Enrichment of Brain Cell ×	PI Gene Annotations from Hierarchical Model. The 
top half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). scaling of the y-axis across panels differs due 
to widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the residuals of the compulsive disorders (panel B) and psychotic disorders (panel C) factors after accounting for 
variance explained by the p-factor. The total effective sample size for the factors was: Compulsive Factor (N= 
19,108) and Psychotic Factor (N = 87,138); however, it is important to note that these are enrichment estimates for 
the residual variance in the factors such that the effective N for just these residual components will be much smaller.   
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Supplementary Figure 24c. Enrichment of Brain Cell ×	PI Gene Annotations from Hierarchical Model. The 
top half of each panel depicts the enrichment point estimates, with error bars indicating +/- 1.96 SEs. The black 
dashed line on the top half reflects the null (enrichment = 1). The bottom half of each panel depicts the log10(p) 
values. The red dashed line on the bottom half reflects log10(p = .05). The scaling of the y-axis across panels differs 
due to widely discrepant ranges in CIs across factors. For comparative purposes across factors, all graphs for the 
hierarchical factor model are based on increasing significance for the hierarchical p-factor. Estimates are shown for 
the residuals of the neurodevelopmental disorders (panel D) and internalizing (panel C) factors after accounting for 
variance explained by the p-factor. The effective sample size for the factors was Neurodevelpomental Factor (N= 
55,932) and Internalizing Factor (N= 455,340); however, it is important to note that these are enrichment estimates 
for the residual variance in the factors such that the effective N for just these residual components will be much 
smaller.   
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Supplementary Figure 25.  Histograms of Genomic SEM Factor GWAS Simulation Results.  Panels 
depict the -log10(p) values for SNP effects on the Internalizing disorders factor across the 9 different 
population generating scenarios.  All panels depict in blue as a reference point the simulation scenario 
that exactly matched the factor model (i.e., Scenario 1 depicted in upper left panel) and in green the 
specific scenario indicated in the histogram title.  
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Supplementary Figure 26.  Histograms of Factor GWAS QSNP Simulation Results.  Panels depict the 
-log10(p) values for QSNP for the Internalizing disorders factor across the 9 different population generating 
scenarios.  All panels depict in blue as a reference point the simulation scenario that exactly matched the 
factor model (i.e., Scenario 1 depicted in upper left panel) and in green the specific population generating 
scenario indicated in the histogram title. 
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Supplementary Figure 27. Genomic SEM Factor GWAS Simulation Results. Panel A depicts the -
log10(p) values as a QQ-plot for SNP effects on the Internalizing disorders factor for the 9 different 
population generating scenarios with. Panel B depicts the same simulation results also with -log10(p) 
values on the y-axis while the x-axis depicts rank orderered simulation results from the 0% percentile to 
100% percentile across the 250 simulation runs. In both panels the different simulation scenarios are 
depicted as: Scenario 1 that matches the factor model depicted in red; Scenario 2 with the covariance 
between the SNP and ALCH set at 0 in the generating population in blue; Scenario 3 with the covariance 
between the SNP and PTSD set at 0 in the generating population in green; Scenario 4 with the covariance 
between the SNP and ANX set at 0 in the in the generating population in purple; Scenario 5 with the 
covariance between the SNP and MDD set at 0 in the generating population in orange; Scenario 6 with 
the covariance between the SNP and PTSD, ALCH and ANX set at 0 in the generating population in 
yellow; Scenario 7 with the covariance between the SNP and PTSD, ALCH, ANX, and MDD set at 0 in 
the generating population in brown; Scenario 8 with the covariance between the SNP and all psychiatric 
traits set at 0 in pink; and Scenario 9 with the sign reversed for the covariance between the SNP and ANX 
and ALCH (i.e., multiplied by -1) in grey.   
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Supplementary Figure 28.  Genomic SEM Factor GWAS QSNP Simulation Results. Panel A depicts 
the QQ-plot -log10(p) values for QSNP for the internalizing disorders factor for the 9 different population 
generating scenarios. Panel B depicts the same simulation results also with -log10(p) values on the y-axis 
while the x-axis depicts rank orderered simulation results from the 0% percentile to 100% percentile 
across the 250 simulation runs. Note that QSNP was calculated as the factor specific QSNP for the 
internalizing disorders factor. The 9 population generating scenarios were: Scenario 1 that matches the 
factor model depicted in red; Scenario 2 with the covariance between the SNP and ALCH set at 0 in the 
generating population in blue; Scenario 3 with the covariance between the SNP and PTSD set at 0 in the 
generating population in green; Scenario 4 with the covariance between the SNP and ANX set at 0 in the 
in the generating population in purple; Scenario 5 with the covariance between the SNP and MDD set at 0 
in the generating population in orange; Scenario 6 with the covariance between the SNP and PTSD, 
ALCH and ANX set at 0 in the generating population in yellow; Scenario 7 with the covariance between 
the SNP and PTSD, ALCH, ANX, and MDD set at 0 in the generating population in brown; Scenario 8 
with the covariance between the SNP and all psychiatric traits set at 0 in pink; and Scenario 9 with the 
sign reversed for the covariance between the SNP and ANX and ALCH (i.e., multiplied by -1) in grey. 
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Supplementary Figure 29. MTAG Model Specified in Genomic SEM. Figure depicts the path diagram 
for the MTAG model for MDD as specified in a Genomic SEM model. The regression path between a 
given SNPj and MDD is highlighted in red as this reflects the regression path that statistically mirrors the 
output from MTAG and as such is the MTAG outcome reported in the simulation results. In addition, we 
refer the reader to the Online Supplement of the original Genomic SEM publication22 for a formal 
explication on the equivalence of this model specification to the MTAG model  
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Supplementary Figure 30.  Density Plots of Multivariate GWAS Simulation Results across 
Multivariate Methods.  Panels depict the -log10(p) values across the 9 different population generating 
scenarios for the Factor Model (in dark blue), Unstructured Mode (in light blue), MTAG Model (in 
green), N-GWAMA (in red), and MA-GWAMA (in yellow).  Note that the scaling of the y-axis varies for 
certain population generating scenarios due to a density of observations around -log10(p) of 0 while the 
scaling of the x-axis is kept consistent. Lines are depicted as dashed for certain panels when similar 
results were obtained across methods and, consequently, the lines laid on top of one another. 
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Supplementary Figure 31a. QQ-plot of Simulation Results for Scenario 1 Across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 1 that mirrored the 
factor structure. Results are depicted for the Factor Model (in dark blue), Unstructured Model (in light 
blue), MTAG Model (in green), N-GWAMA (in red), and MA-GWAMA (in yellow). The x-axis depicts 
rank orderered simulation results within each method in percentile from 0% percentile to 100% percentile 
across the 250 simulation runs. The y-axis depicts the -log10(p-value) for each simulation run.  
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Supplementary Figure 31b. QQ-plot of Simulation Results for Scenario 2 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 2 that set the 
association between the SNP and ALCH to 0 in the population. Results are depicted for the Factor Model 
(in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA (in red), and 
MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each method in 
percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis depicts the -
log10(p-value) for each simulation run.  
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Supplementary Figure 31c. QQ-plot of Simulation Results for Scenario 3 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 3 that set the 
association between the SNP and PTSD to 0 in the population. Results are depicted for the Factor Model 
(in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA (in red), and 
MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each method in 
percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis depicts the -
log10(p-value) for each simulation run.  
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Supplementary Figure 31d. QQ-plot of Simulation Results for Scenario 4 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 4 that set the 
association between the SNP and ANX to 0 in the population. Results are depicted for the Factor Model 
(in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA (in red), and 
MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each method in 
percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis depicts the -
log10(p-value) for each simulation run.  
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Supplementary Figure 31e. QQ-plot of Simulation Results for Scenario 5 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 5 that set the 
association between the SNP and MDD to 0 in the population. Results are depicted for the Factor Model 
(in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA (in red), and 
MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each method in 
percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis depicts the -
log10(p-value) for each simulation run. Lines are depicted as dashed for MTAG and N-GWAMA as 
similar results were obtained across these methods and, consequently, the lines laid on top of one another. 
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Supplementary Figure 31f. QQ-plot of Simulation Results for Scenario 6 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 6 that set the 
association between the SNP and PTSD, ANX, and ALCH to 0 in the population. Results are depicted for 
the Factor Model (in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-
GWAMA (in red), and MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results 
within each method in percentile from 0% percentile to 100% percentile across the 250 simulation runs. 
The y-axis depicts the -log10(p-value) for each simulation run.  
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Supplementary Figure 31h. QQ-plot of Simulation Results for Scenario 7 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 7 that set the 
association between the SNP and MDD, PTSD, ANX, and ALCH to 0 in the population. Results are 
depicted for the Factor Model (in dark blue), Unstructured Model (in light blue), MTAG Model (in 
green), N-GWAMA (in red), and MA-GWAMA (in yellow).  The x-axis depicts rank orderered 
simulation results within each method in percentile from 0% percentile to 100% percentile across the 250 
simulation runs. The y-axis depicts the -log10(p-value) for each simulation run. Lines are depicted as 
dashed as similar results were obtained across these methods and, consequently, the lines laid on top of 
one another. 
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Supplementary Figure 31i. QQ-plot of Simulation Results for Scenario 8 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 8 that set the 
association between the SNP and all psychiatric traits at 0 in the population. Results are depicted for the 
Factor Model (in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA 
(in red), and MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each 
method in percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis 
depicts the -log10(p-value) for each simulation run. Lines are depicted as dashed as similar results were 
obtained across methods and, consequently, the lines laid on top of one another. 
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Supplementary Figure 31j. QQ-plot of Simulation Results for Scenario 9 across Multivariate 
Methods. Figure depicts the simulation results for the population generating Scenario 9 that reversed the 
direction of the association between the SNP and ANX and ALCH. Results are depicted for the Factor 
Model (in dark blue), Unstructured Model (in light blue), MTAG Model (in green), N-GWAMA (in red), 
and MA-GWAMA (in yellow). The x-axis depicts rank orderered simulation results within each method 
in percentile from 0% percentile to 100% percentile across the 250 simulation runs. The y-axis depicts the 
-log10(p-value) for each simulation run.  
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Supplementary Figure 32a. QQ-plots for Multivariate GWAS using LDSC. Expected −log10(p)-
values are those expected under the null hypothesis. The shaded area indicates the 95% confidence 
interval with the line on the diagonal indicating the null. In the top panel, results are shown for the 
unstructured meta-analysis (panel A) reflecting an 11 df omnibus meta-analysis across all 11 psychiatric 
indicators. The middle four panels depict the compulsive disorders (panel B), psychotic disorders (panel 
C), neurodevelopmental disorders (panel D), and internalizing disorders (panel E) factors from the 
correlated factors model. Panel F depicts results for the hierarchical, second-order factor. Panel G depicts 
results for the bifactor p-factor. Blue lines depict results for the psychiatric factors. Pink lines depict the 
factor specific QSNP estimates. 
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Supplementary Figure 32b. QQ-plots for Multivariate GWAS using LDSC Against Univariate 
GWAS. Expected −log10(p)-values are those expected under the null hypothesis. The shaded area 
indicates the 95% confidence interval with the line on the diagonal indicating the null. Results are shown 
for all indicators that loaded on a given factor along with the factor results for the compulsive (panel A), 
psychotic (panel B), neurodevelopmental (panel C), and internalizing disorders (panel D) factors. Note 
that the y-axes are scaled to be unique to each panel.  
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Supplementary Figure 33. Bar plots of SNP level effects. Figure displays Z-statistics from univariate summary statistics 
for individual variants estimated as genome-wide significant for the Compulsive disorders (panel A), Psychotic disorders 
(panel B), Neurodevelopmental disorders (panel C), and Internalizing disorders factor (panel D) from the correlated 
factors model. Panel E depicts a variant that was significant across all factor specific QSNP estimates. This particular 
variant lies within the well described ADH1B gene. Panel F displays a variant that was significant for the second-order, p-
factor from the hierarchical factor model. 
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Supplementary Figure 34. Miami plots for Psychiatric Factors using S-LDSC Matrix. Genomic SEM was used to 
conduct a multivariate GWAS from the correlated factors model for compulsive disorders (Factor 1; panel A), psychotic 
disorders (Factor 2; panel B), neurodevelopmental disorders (Factor 3; panel C), and internalizing disorders (Factor 4; 
panel D) using the genome-wide S-LDSC matrix. Panel E depicts results from the omnibus test across all 11 psychiatric 
traits. Panel F depicts the results of the SNP effect on the second-order general liability factor from the hierarchical 
model. The top half of the hierarchical and correlated factors plots depicts the -log10(p) values for SNP effects on the 
factor; the bottom half depicts the log(10)p values for the factor specific QSNP effects. The gray dashed line marks the 
threshold for genome-wide significance (p < 5 × 10-8). Black triangles denote independent factor hits that were in LD 
with hits for one of the univariate indicators and were not in LD factor-specific QSNP hits. Large red triangles denote 
novel loci that were not in LD with any of the univariate GWAS or factor-specific QSNP hits. Purple diamonds denote 
QSNP hits. 
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Supplementary Figure 35. QQ-plots for Multivariate GWAS using S-LDSC. Expected −log10(p)-values are 
those expected under the null hypothesis. The shaded area indicates the 95% confidence interval with the line on 
the diagonal indicating the null. In the top four panels, results are shown for the compulsive disorders (panel A), 
psychotic disorders (panel B), neurodevelopmental disorders (panel C), and internalizing disorders (panel D) 
factors from the correlated factors model. Panel E depicts the results from the 11 df omnibus meta-analysis 
across all 11 psychiatric indicators. Panel F depicts results for the hierarchical, second-order factor. Blue lines 
depict results for the psychiatric factors. Pink lines depict the factor specific QSNP estimates.  
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Supplementary Figure 36. Miami plots of Multivariate GWAS using S-LDSC (top) and LDSC 
(bottom). Genomic SEM was used to conduct a multivariate GWAS using both the S-LDSC and LDSC 
genome-wide, genetic covariance matrices. For all panels, results from S-LDSC and LDSC are shown on 
the top half and bottom half of the Miami plots, respectively. Results are shown from the correlated 
factors model for compulsive disorders (Factor 1; panel A), psychotic disorders (Factor 2; panel B), 
neurodevelopmental disorders (Factor 3; panel C), and internalizing disorders (Factor 4; panel D) using 
the genome-wide S-LDSC matrix. Panel E depicts results from the omnibus test across all 11 psychiatric 
traits. Panel F depicts the results of the SNP effect on the second-order general liability factor from the 
hierarchical model. The gray dashed line marks the threshold for genome-wide significance (p < 5 × 10-8). 
Black triangles denote independent factor hits that were in LD with hits for one of the univariate 
indicators and were not in LD factor-specific QSNP hits. Large red triangles denote novel loci that were not 
in LD with any of the univariate GWAS or factor-specific QSNP hits. Purple diamonds denote QSNP hits. 
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Supplementary Figure 37a. Comparison of GWAS p-values for LDSC and S-LDSC. Scatter plot 
comparing p-values between LDSC (y-axis) and S-LDSC (x-axis) estimation for the compulsive disorders 
factor (panel A) and the thought disorders factor (panel B). Red line reflects the regression line for LDSC 
predicting itself (i.e., a slope of 1), with dots above the line estimated as less significant for LDSC.  
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Supplementary Figure 37b. Comparison of GWAS p-values for LDSC and S-LDSC. Scatter plot 
comparing p-values between LDSC (y-axis) and S-LDSC (x-axis) estimation for the neurodevelopmental 
disorders factor (panel A) and the internalizing disorders factor (panel B). Red line reflects the regression 
line for LDSC predicting itself (i.e., a slope of 1), with dots above the line estimated as less significant for 
LDSC. 
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Supplementary Figure 38. Comparison of GWAS -log10(p-values) estimated and observed for 
MDD. Scatter plot compares -log10(p-values) between what was observed for MDD versus computing an 
indirect, estimated effect of the SNP effect on MDD in the context of the correlated factors model. This 
indirect effect was estimated in Genomic SEM and computed as the sum of the product of the effect of 
the SNP on the neurodevelopmental factors by the factor loading for MDD on this factor and the product 
of the effect of the SNP on the internalizing factor by the factor loading of MDD on the internalizing 
factor. Scatterplot displays these effects for the 109 independent loci for MDD and 200 randomly selected 
loci.  Red line reflects the regression line for observed MDD predicting itself (i.e., a slope of 1), with dots 
above the line more significant for observed -log10(p-values). The correlation in this plot between the 
observed and estimated MDD -log10(p-values) was > .99.  
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Supplementary Figure 39. Multi-Trait Mendelian Randomization Model for ADH1B as Instrument of Problematic Alcohol Use. Figures 
display unstandardized parameter estimates (and standard errors in parentheses) from a model in which a SNP in the ADH1B gene was specified 
to predict ALCH, and ALCH to predict the indicators of the Psychotic, Neurodevelopmental, and Internalizing disorders factors (panel A) or the 
factors themselves (panel B). Paths from the SNP to ALCH are depicted in red, while direct paths from ALCH to disorders or factors are depicted 
in purple. For simplicity, residual variances for the disorders are not depicted. We note that the ADH1B showed a smaller effect on ALCH due to 
the lead ADH1B variant (rs1229984; p =1.135E-60 for univariate effect on ALCH) from our ALCH meta-analysis being listwise deleted across all 
11 psychiatric traits. We also note that models in which the SNP was specified to additionally predict the compulsive disorders factor all fit 
slightly worse, while producing equivalent point estimates to those displayed here. Finally, we note that the factor variances of 1 depicted in panel 
B reflect the residual variances of the factor.
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Supplementary Figure 40. Multi-Trait, Multi-SNP Mendelian Randomization Models for Problematic Alcohol Use. Figures display 
unstandardized parameter estimates (and standard errors in parentheses) from models that examined the causal effect of ALCH on the disorders 
(panel A) and the more general psychiatric factors (panel B). The 8 SNPs used as instruments for ALCH were identified from an independent 
discovery GWAS of problematic alcohol use. Paths from SNPs to disorders are depicted in red, while direct paths from ALCH to disorders or 
factors are depicted in purple. Results revealed a causal effect of ALCH on MDD and BIP (panel A), but not on the more general Internalizing or 
Psychotic disorders factors (panel B), or the remaining factors or disorders. For simplicity, residual variances for the disorders are not depicted. 
We note that the factor variances of 1 depicted in panel B reflect the residual variances of the factor
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Supplementary Figure 41a. Manhattan plots from meta-analyses of ADHD and MDD. Genomic 
SEM was used to conduct a meta-analysis of attention-deficit/hyperactivity disorder (ADHD; panel A) 
and major depressive disorder (MDD; panel B). The gray dashed line marks the threshold for genome-
wide significance (p < 5 × 10-8). Black triangles denote independent loci.  
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Supplementary Figure 41b. Manhattan plots from meta-analyses of Alcohol and Anxiety. Genomic 
SEM was used to conduct a meta-analysis of problematic alcohol use (panel A) and anxiety disorders 
(panel B). The gray dashed line marks the threshold for genome-wide significance (p < 5 × 10-8). Black 
triangles denote independent loci.  
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Supplementary Figure 41c. Manhattan plots from meta-analysis of PTSD. Genomic SEM was used 
to conduct a meta-analysis of post-traumatic stress disorder (PTSD). The gray dashed line marks the 
threshold for genome-wide significance (p < 5 × 10-8).  
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Supplementary Figure 42. Heatmap of Genetic Correlations and Factor Models. Panel A: LD-score 
regression was used to estimate the genetic correlations among  the eleven psychiatric traits. The heatmap 
was hierarchically clustered using the corrplot R package. Panel B: S-LDSC was used to estimate the 
genetic correlations across the same eleven psychiatric traits. The heatmap was ordered based on that in 
Panel A for comparative purposes. Panel C: Figure presents difference LDSC and S-LDSC estimates. 
Panel D: Standardized results for correlated factors model fit to LDSC matrix. Panel E: Standardized 
results for correlated factors model fit to S-LDSC matrix. Panel F: Standardized results for hierarchical 
factor model fit to LDSC matrix. Panel G: Standardized results for hierarchical factor model fit to S-
LDSC matrix. ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; 
TS = Tourette syndrome; PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism 
spectrum disorder; ALCH = problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; 
BIP = bipolar disorder; SCZ = schizophrenia.  
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Supplementary Figure 43a. Even-autosome Genetic CFA for Common Factor Model. Figure 
presents the standardized results for a CFA fit to an even-autosome genetic covariance matrix for a 
common factor model. ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive 
disorder; TS = Tourette syndrome; PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT 
= autism spectrum disorder; ALCH = problematic alcohol use; ANX = anxiety; MDD = major depressive 
disorder; BIP = bipolar disorder; SCZ = schizophrenia.  
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Supplementary Figure 43b. Three-Factor Genetic CFAs in Even Autosomes. Figure presents the 
standardized results for CFA fit to an even-autosome genetic covariance matrix based on a four-factor 
oblique (panel A) and orthogonal (panel B) EFAs fit to an odd autosome genetic covariance matrix. There 
is one less factor than was estimated in the EFA as TS was initially estimated to load on a factor as its 
only indicator. CFAs based on orthogonal EFAs included factor correlations as pruning factor loadings 
from the EFA solution will re-introduce these correlations. ADHD = attention-deficit/hyperactivity 
disorder; OCD = obsessive-compulsive disorder; TS = Tourette syndrome; PTSD = post-traumatic stress 
disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH = problematic alcohol use; 
ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; SCZ = schizophrenia.  
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Supplementary Figure 43c. Four-Factor Genetic CFAs in Even Autosomes. Figure presents the 
standardized results for CFA fit to an even-autosome genetic covariance matrix based on a five-factor 
oblique (panel A) and orthogonal (panel B) EFAs fit to an odd autosome genetic covariance matrix. There 
is one less factor than was estimated in the EFA as TS was initially estimated to load on a factor as its 
only indicator. CFAs based on orthogonal EFAs included factor correlations as pruning factor loadings 
from the EFA solution will re-introduce these correlations. ADHD = attention-deficit/hyperactivity 
disorder; OCD = obsessive-compulsive disorder; TS = Tourette syndrome; PTSD = post-traumatic stress 
disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH = problematic alcohol use; 
ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; SCZ = schizophrenia. 
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Supplementary Figure 43d. Genetic Hierarchical CFA in Even Autosomes. Figure presents the 
standardized results for a hierarchical CFA fit to an even-autosome genetic covariance matrix. ADHD = 
attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; TS = Tourette syndrome; 
PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH 
= problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; 
SCZ = schizophrenia. 
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Supplementary Figure 44a. Heatmap of Model Implied Genetic Correlation Matrix for Common 
Factor Solution in Even Autosomes. The lower diagonal of the heatmap presents the model implied 
correlation matrix for the common factor CFA fit to the even autosome genetic correlation matrix. The 
upper diagonal depicts the observed even autosome genetic correlation matrix subtracted from the model 
implied correlation matrix, with positive values indicating upwardly biased estimates. ADHD = attention-
deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; TS = Tourette syndrome; PTSD = 
post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH = 
problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; SCZ 
= schizophrenia.  
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Supplementary Figure 44b. Heatmap of Model Implied Genetic Correlation Matrix for Three-
Factor CFA Solutions fit in Even Autosomes. The lower diagonal of the heatmap presents the model 
implied correlation matrix for the three correlated factor CFAs fit in the even autosome genetic 
correlation matrix that was specified based on the oblique (panel A) or orthogonal (panel B) EFAs. CFAs 
based on orthogonal EFAs included factor correlations as pruning factor loadings from the EFA solution 
will re-introduce these correlations. The upper diagonal depicts the observed even autosome genetic 
correlation matrix subtracted from the model implied correlation matrix, with positive values indicating 
upwardly biased estimates. ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-
compulsive disorder; TS = Tourette syndrome; PTSD = post-traumatic stress disorder; AN = anorexia 
nervosa; AUT = autism spectrum disorder; ALCH = problematic alcohol use; ANX = anxiety; MDD = 
major depressive disorder; BIP = bipolar disorder; SCZ = schizophrenia.  
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Supplementary Figure 44c. Heatmap of Model Implied Genetic Correlation Matrix for Four-Factor 
CFA Solutions fit in Even Autosomes. The lower diagonal of the heatmap presents the model implied 
correlation matrix for the four correlated factor CFAs fit in an even autosome correlation matrix that were 
specified based on the oblique (panel A) or orthogonal (panel B) EFAs. CFAs based on orthogonal EFAs 
included factor correlations as pruning factor loadings from the EFA solution will re-introduce these 
correlations. The upper diagonal depicts the observed even autosome genetic correlation matrix 
subtracted from the model implied correlation matrix, with positive values indicating upwardly biased 
estimates. ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; TS = 
Tourette syndrome; PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism 
spectrum disorder; ALCH = problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; 
BIP = bipolar disorder; SCZ = schizophrenia. 
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Supplementary Figure 44d. Heatmap of Model Implied Genetic Correlation Matrix for 
Hierarchical Solution in Even Autosomes. In panel A, the lower diagonal of the heatmap presents the 
model implied correlation matrix for the hierarchical CFA fit to the even autosome genetic correlation 
matrix. The upper diagonal depicts the observed even autosome genetic correlation matrix subtracted 
from the model implied correlation matrix, with positive values indicating upwardly biased estimates. The 
lower diagonal of Panel B depicts the model implied factor correlations from the hierarchical CFA. The 
upper diagonal depicts the correlations estimated in the corresponding non-hierarchical CFA subtracted 
from the model implied factor correlations in the hierarchical CFA. ADHD = attention-
deficit/hyperactivity disorder; OCD = obsessive-compulsive disorder; TS = Tourette syndrome; PTSD = 
post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH = 
problematic alcohol use; ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; SCZ 
= schizophrenia. 
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Supplementary Figure 45. Model Comparisons for Producing Factor-Specific QSNP. Panel A depicts the model run to obtain a model c2 for the 
multivariate GWAS of the correlated factors model. Panel B depicts the follow-up model for the compulsive disorders factor, where a given SNP predicts 
the indicators of the compulsive disorders factor, in addition to the remaing three factors. Model c2  difference tests between the model c2  for the model in 
panels A and B index whether the pattern of associations with a given SNP is well-accounted for by the factor. In order to produce factor-specific QSNP 

estimates for the remaining three factors, the model in Panel B was re-specified three additional times, such that the SNP simultanesouly predicted three of 
the factors and the factor indicators for the remaining factor. Panel C depicts the model run to obtain model c2  for the hierarchical factor model. Panel D 
depicts the follow-up model in which the SNP directly predicts the four, first-order factors. As with the top two panels, comparing the model c2 across 
panels C and D produces indexes whether the pattern of associations with a given SNP is well-accounted for by the factor structure of the second-order, p-
factor. The loading of the first indicator for each factor is fixed to 1 in all panels for identification purposes.
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